Mu

Miscellaneous Utilities
Version 0.0, last updated 7 February 2024

Asher Gordon




This is the manual for Mu (Miscellaneous Utilities) version 0.0, last updated 7 February
2024.

Copyright (©) 2020 Asher Gordon AsDaGo@posteo.net

You may copy, modify, and redistribute this manual under the terms of the
GNU General Public License version 3 (or, at your option, any later version),
and/or the GNU Free Documentation License, Version 1.3 (or, at your option,
any later version).

This manual is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This manual is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See Appendix A [GNU
General Public License|, page 53, for more details.

You should have received a copy of the GNU General Public License along with
this manual. If not, see https://www.gnu.org/licenses/.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License” (see Appendix B
[GNU Free Documentation License], page 64).


mailto:AsDaGo@posteo.net
https://www.gnu.org/licenses/

Table of Contents

1 Introduction................ ... ... . ... ..., 1
1.1 Terms and Notation Used in this Manual ........................ 1
1.2 Using Mu in Your Program ........... ... ... .. 1
1.3 Reporting Bugs. ... ... 1

2 Parsing Options and Environment............ .. 3
2.1 Option Structure . ....... ..ot e 5
2.2 Aliases for Options and Environment Variables ................ 10
2.3 Negatable Options ....... ..o 11

2.3.1 Negation Prefixes...........coooiiiiiiiiiiii i, 13
2.4 Option Arguments ..........coiueiieintin i, 14

2.4.1 Option Argument Types. ..., 15
2.5 Option Callbacks. ...... ..o i 18
2.6 Parsing Enumerated Arguments to Options.................... 22
2.7 Parsing Suboptions............oiiiiiiiii 25
2.8 Parsing the Environment .......... .. ... . . oL 28
2.9 Option Parsing Flags. ..., 31
2.10 Ordered Option Parsing ..., 33
2.11 Formatting Help ... 37
2.12 Option Parsing Errors...........coviiiiiiiiiiin ... 44

3 Formatting Text ................................ 45
3.1 Controlling Formatted Output............ ... ... ..., 46
3.2 Formatting Example ....... .. o 47

4 Safety Functions................................ 48

5 Compatibility Functions ....................... 52

Appendix A GNU General Public License..... 53

Appendix B GNU Free Documentation

License....... .. ... . 64

Appendix C Concept Index ..................... 72

Appendix D Function and Macro Index........ 75

Appendix E TypelIndex......................... 76



Appendix F Variable and Constant Index

ii



1 Introduction

Mu is a general purpose convenience library. It provides functions which perform common
tasks, as well as some compatibility functions.

All code examples in this manual that can be compiled on their own are available in the
doc/examples directory in the source distribution.

1.1 Terms and Notation Used in this Manual

There are several types of arguments dealt with in this manual: arguments to command
line options; non-option, positional arguments passed on the command line; and parameters
passed to functions. When we refer to arguments passed to command line options, we will
use the term argument on its own. When we refer to non-option, positional arguments
passed on the command line, we will use the term positional argument. When we refer
to the value of an environment variable, we will use the term value. When we refer to
parameters passed to functions, we will use the term parameter.

When referring to a field in a C struct or union, we will use the term field.

In examples, messages printed to standard output will be prefixed with “-”, while
messages printed to standard error will be prefixed with “ 7,

1.2 Using Mu in Your Program

Mu is written in C, and currently no bindings exist for other languages. So (for now at
least) you can only use Mu in C programs.

Several header files are provided by Mu. Each one provides a different category of
functions. All header files are installed in the mu subdirectory. So to include, for example,
compat.h, write #include <mu/compat.h>.

To link with the library, use -1mu as an argument to the linker.

Note: Since Mu is released under the terms of the GNU General Public License, you
may not use it in proprietary programs. If your program links with Mu, it must be licensed
under the GNU GPL or a compatible license. Please see Appendix A [GNU General Public
License|, page 53, for more details.

Please note: Mu is not currently stable, and the API is subject to change. Feel free to
use Mu, but please keep this in mind.

1.3 Reporting Bugs

Please report bugs to the bug tracker at Savannah (https://savannah.nongnu.
org/bugs/?group=libmu&func=additem). You may also email bug reports to the 1ibmu-
bug@nongnu.org mailing list. See also the list information page for libmu-bug (https://
lists.nongnu.org/mailman/listinfo/libmu-bug). Include enough information to repro-
duce the bug if possible, as well as the version of Mu, your machine architecture, operating
system, etc. Make sure to read the documentation for the functions you are using, and
ensure that you are using the functions correctly. You should also include any error mes-
sages if applicable, and a backtrace if you can. If possible, include a source file (preferably
minimal) that causes the bug to occur.


https://savannah.nongnu.org/bugs/?group=libmu&func=additem
https://savannah.nongnu.org/bugs/?group=libmu&func=additem
mailto:libmu-bug@nongnu.org
mailto:libmu-bug@nongnu.org
https://lists.nongnu.org/mailman/listinfo/libmu-bug
https://lists.nongnu.org/mailman/listinfo/libmu-bug

Chapter 1: Introduction 2

If you are reporting a test failure (run by make check), include the file
tests/testsuite.log in your report. Even if you're not reporting a test failure, it can
still be helpful to run make check and include tests/testsuite.log.

For more information on writing effective bug reports, I suggest reading Simon Tatham’s
excellent essay, How to Report Bugs Effectively (https://www.chiark.greenend.org.uk/
~sgtatham/bugs.html)

You can also send reports for bugs in this manual itself to the bug tracker (https://
savannah.nongnu.org/bugs/?group=libmu&func=additem) or mailing list.


https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://savannah.nongnu.org/bugs/?group=libmu&func=additem
https://savannah.nongnu.org/bugs/?group=libmu&func=additem
mailto:libmu-bug@nongnu.org

2 Parsing Options and Environment

Mu includes option parsing capability. Mu can parse command line options; both short
options (a single dash followed by a letter, e.g., -s) and long options (two dashes followed
by a multi-letter word, e.g., ——long). Long options may also be specified with a single ‘-’ as
long as the flag MU_OPT_BUNDLE is not set (see Section 2.9 [Option Parsing Flags|, page 31).

Mu also supports parsing the environment. See Section 2.8 [Parsing the Environment],
page 28, for more information.

The option structure is fairly complicated, and its organization is subject to change. For
that reason, it is highly recommended that you use designated structure initializers or set
the values after declaration.

You can use designated initializers like this:

const MU_OPT options[] = {

{
.short_opt = "s",
.long_opt = "long",
.has_arg = MU_OPT_NONE
}’
{0}
};

However, since designated initializers are only available in C99 and later (see Section
“Designated Inits” in gcc), this may not be an option for you. The following is equivalent
to the above example without using designated initializers:

const MU_OPT options[2] = { 0 };
options[0].short_opt = "s";
options[0].long_opt "long";
options[0].has_arg MU_OPT_NONE;

If you would like to use option parsing features, include mu/options.h.

MU_OPT_CONTEXT [Data Type]
This is an opaque context for parsing options. It is allocated using mu_opt_context_
new and similar functions. To free it, you must use mu_opt_context_free. Both
functions (among others) are described below.

MU_OPT_CONTEXT * mu_opt_context_new (int argc, char [Function]
xxargv, const MU_OPT *options, int flags)

MU_OPT_CONTEXT * mu_opt_context_new_with_env (int argc, [Function]
char *xargv, char **xenvironment, const MU_OPT *options, int
flags)

Allocate and return a new option parsing context. argv is the list of arguments to
be parsed. argv[0] should be the name the program was invoked as, and the rest of
argv should be the arguments given on the command line. argc is the length of argv.
Normally, argc and argv should be used directly from main.

The returned context can also be used for parsing environment variables through the
env_var field of the option structure (see Section 2.1 [Option Structure], page 5).
When mu_opt_context_new is used to allocate the option parsing context, environ-
ment variables are parsed in the program environment (see Section “Environment Ac-
cess” in 1ibc). If you want to use an alternative environment, use mu_opt_context_
new_with_env to allocate the option parsing context, in which case environment



Chapter 2: Parsing Options and Environment 4

variables will be parsed in environment. environment can also be NULL, in which case
environment variable parsing will be disabled. environment (or the program environ-
ment in the case of mu_opt_context_new) is never modified, unless, of course, any of
the callbacks modify it (see Section 2.5 [Option Callbacks|, page 18).

Normally, all arguments will be parsed at once when mu_parse_opts is called, and
the context returned by these functions should only be passed to mu_parse_opts
once. However, you can use mu_opt_context_set_arg_callback or the MU_OPT_
CONTINUE flag if you care about the order in which options and arguments appear on
the command line (see Section 2.10 [Ordered Option Parsing], page 33).

options is the list of options and environment variables that can occur in argv and en-
vironment (or the program environment). See Section 2.1 [Option Structure|, page 5.
Note that options is copied into the returned context, not used directly. Because of
this, you need not worry about options going out of scope. For example, you might
write a function which returns an option parsing context from a list of options which
is local to that function’s scope. Of course, you still need to ensure that no pointers
referenced by any of the fields in options go out of scope (cb_data for example; see
Section 2.1 [Option Structure], page 5).

flags is a bitmask of flags that effect how options are parsed (see Section 2.9 [Option
Parsing Flags|, page 31).

If you want to write a function which parses some options, but then leaves the rest for
the caller to parse, consider using the MU_OPT_ALLOW_INVALID flag (see Section 2.9
[Option Parsing Flags|, page 31). Note, however, that it may instead be better to use
mu_opt_context_add_options (see below).

On error, this function returns NULL and the external variable errno will be set
to indicate the error. For a function which terminates the program on error, use
mu_opt_context_xnew and mu_opt_context_xnew_with_env (see Chapter 4 [Safety
Functions|, page 48).

int mu_opt_context_free (MU_OPT_CONTEXT *context) [Function]
Free the option context, context. For the cb_data fields in each option, the cb_
data_destructor field (if any) will be used to free that data (see Section 2.1 [Option
Structure], page 5, and Section 2.5 [Option Callbacks], page 18). If any of the destruc-
tors return nonzero, mu_opt_context_free will return nonzero as well. Otherwise,
mu_opt_context_free will return zero.

Note that all the destructors are called, even if one or more of them return nonzero.

int mu_parse_opts (MU_OPT_CONTEXT *context) [Function]
Parse the options given in context. Use mu_opt_context_new or mu_opt_context_
new_with_env (see above) to create the context. On success, the number of arguments
parsed is returned. You can pass this value to mu_shift_args (see below). On error,
an error code is returned, which can be detected by MU_OPT_ERR (see Section 2.12
[Option Parsing Errors|, page 44).
Note that if mu_opt_context_set_arg_callback was called on context, the number
of positional arguments will be included in the return value as well, if neither the
MU_OPT_PERMUTE nor MU_OPT_STOP_AT_ARG flags are used. However, if either of these
flags are used, the return value will not include the number of positional arguments



Chapter 2: Parsing Options and Environment 5

enum

parsed, even if mu_opt_context_set_arg_callback was called. This is so that you
can shift the arguments by the return value and the remaining arguments will be
the non-option positional arguments. Note that this would not be useful if neither
the MU_OPT_PERMUTE flag nor the MU_OPT_STOP_AT_ARG flag was passed, because it
would not be guaranteed that all the arguments left after shifting actually were the
non-option positional arguments. For this reason, positional arguments are included
in the return value when neither of these flags are passed. See Section 2.10 [Ordered
Option Parsing], page 33.

MU_OPT_-WHERE [Enumerated Type]
This type specifies whether to append or prepend options (see mu_opt_context_add_
options below). Values of this type can be either of the following:

MU_OPT_PREPEND
Indicate that options should be prepended (before existing options).

MU_OPT_APPEND
Indicate that options should be appended (after existing options).

int mu_opt_context_add_options (MU_OPT_CONTEXT *context, [Function]

void

2.1

const MU_OPT *options, enum MU_OPT_WHERE where)
Add options to context. If where is MU_OPT_APPEND, append options to the cur-
rent options in context. Otherwise, if where is MU_OPT_PREPEND, prepend options
instead. If where is neither MU_OPT_APPEND nor MU_OPT_PREPEND, mu_opt_context_
add_options will return nonzero and errno will be set to EINVAL.

On success, this function returns zero. On error, this function returns nonzero and
sets errno to indicate the error.

If you want to add options for printing usage information, use mu_opt_context_add_
help_options (see Section 2.11 [Formatting Help|, page 37).

mu_shift_args (int *p_argc, char ***p_argv, int [Function]
amount)

This function shifts the arguments in *p_argv by amount and subtracts amount from

xp_argc. The old (*p_argv) [0] will be copied to the new (*p_argv) [0] after the

shift is performed. It can be useful to call this function with the return value of

mu_parse_opts passed as amount® and p_argc and p_argv as the addresses of argc

and argv respectively, as passed to mu_opt_context_new.

Option Structure

MU_OPT [Data Type]

This structure specifies a single option, the arguments the option takes, and the
actions to perform when the option is found. If all fields are 0, that will indicate that
this is the end of the options list.

Unless otherwise specified, these fields may be used both in regular options and sub-
options. If an option takes suboptions as arguments, there are some fields which it

1 But first you should make sure the return value is not an error code (see Section 2.12 [Option Parsing
Errors|, page 44).



Chapter 2: Parsing Options and Environment 6

may not use. Likewise, if an option does not take suboptions as arguments, there are

a few fields

which it may not use. See below for details. See Section 2.7 [Parsing

Suboptions], page 25, for more information on suboptions.

const char

const char

const char

const char

const char

xcategory

This field, if used, is a category for the options following the one in which
this field appears. It has no effect on option parsing, only on help and
man output (see Section 2.11 [Formatting Help], page 37). This field may
not contain newlines (‘\n’).

If this field is the empty string, the following options will be separated by
a newline in help output, and it will have no effect in man page output.

If this field is used, it must be the only field used. You may not set any
other fields if this field is set.

For an example of how this field is used, see Section 2.11 [Formatting
Help|, page 37.

*short_opt
This is the short option character if any, possibly including aliases, or
NULL if this option does not have a short option equivalent.

You may specify multiple aliases by simply including more characters in
the short_opt (see Section 2.2 [Option Aliases], page 10). Note that if
short_opt is not NULL, it must be terminated by a null byte.

This field must not be used in suboptions (see Section 2.7 [Parsing Sub-
options], page 25).

*long_opt

This is the long option string (without leading dashes), or NULL if this op-
tion does not have a short option equivalent. long_opt must not contain
the ‘=’ character, because that is used for passing arguments.

You may specify aliases separated by ‘|’ (see Section 2.2 [Option Aliases],
page 10).

This field must not be used in suboptions (see Section 2.7 [Parsing Sub-
options], page 25).

When matching against long_opt, abbreviation is allowed as long as it
is unambiguous.

*subopt_name

This is the name of the suboption. Like long_opt, it may not contain
the ‘=’ character. Also like long_opt, matching allows abbreviation as
long as it is not ambiguous.

You may specify aliases separated by ‘|’ (see Section 2.2 [Option Aliases],
page 10).

This field must only be used in suboptions (see Section 2.7 [Parsing Sub-
options|, page 25).

*env_var

This is the name of an environment variable. Environment variables
act exactly like options, except that they are passed in the environment



Chapter 2: Parsing Options and Environment 7

rather than on the command line. Like long_opt, env_var must not
contain the ‘=" character, because that is used for indicating the value of
an environment variable.

Unlike long_opt and subopt_name (above), abbreviation is not allowed.
You may specify aliases separated by ‘|’ (see Section 2.2 [Option Aliases],
page 10).

See Section 2.8 [Parsing the Environment], page 28, for more informa-
tion about parsing the environment with mu_parse_opts and Section
“Environment Variables” in libc for more information on environment
variables in general.

enum MU_OPT_HAS_ARG has_arg

This specifies whether the option takes an argument or not, and whether
the argument is optional or required if the option does take an argument.
has_arg can have the value MU_OPT_NONE if the option takes no argument,
MU_OPT_OPTIONAL if the option may optionally take an argument, or MU_
OPT_REQUIRED if the option requires an argument. See Section 2.4 [Option
Arguments|, page 14, for more information on how required and optional
arguments are parsed and handled differently.

enum MU_OPT_ARG_TYPE arg_type

The type of the argument if has_arg is not MU_OPT_NONE. See Sec-
tion 2.4.1 [Option Argument Types|, page 15.

int negatable

If this is nonzero, the option may be negated. For short options, this
means using ‘+’ instead of ‘-’, and for long options and suboptions, it
means prefixing the option with ‘no-’ or the specified negation prefixes
(see Section 2.3.1 [Negation Prefixes|, page 13). Environment variables
may not be negated. See Section 2.3 [Negatable Options], page 11, for
more details.

This field may only be used if has_arg is MU_OPT_NONE.

int *found_opt

If found_opt is not NULL, *found_opt will be set to 1 if the option was
found, or 0 if the option was not found.

int *found_arg

void *arg

If found_arg is not NULL, *found_arg will be set to 1 if an argument to
the option was found, or 0 if no argument was found.

If arg is not NULL, *arg will be set to the argument if an argument was
found. To test if an argument was found, use found_arg. The type
of the argument is determined by arg_type (see Section 2.4.1 [Option
Argument Types], page 15).

This field must only be used if has_arg is not MU_OPT_NONE and arg_type
is not MU_OPT_SUBOPT (see Section 2.4 [Option Arguments|, page 14, and
Section 2.7 [Parsing Suboptions], page 25).



Chapter 2: Parsing Options and Environment 8

int bool_default

long int_default

double float_default

const char *string_default

FILE *file_default

DIR *dir_default

int enum_default
The default values for *arg (see above) if the option is not found.
bool_default should be used for arguments of type MU_OPT_BOOL,
int_default should be used for arguments of type MU_OPT_INT and
so on. See Section 2.4.1 [Option Argument Types|, page 15, for more
information.

These fields may only be used if has_arg is not MU_OPT_NONE.

const char **argstr

If argstr in not NULL, *argstr will be set to the raw, unprocessed argu-
ment unless otherwise specified in Section 2.4.1 [Option Argument Types],
page 15. xargstr is equal to *arg if and only if arg_type is MU_OPT_
STRING.

This field must only be used if has_arg is not MU_OPT_NONE and arg_type
is not MU_OPT_SUBOPT (see Section 2.4 [Option Arguments|, page 14, and
Section 2.7 [Parsing Suboptions]|, page 25).

int (xcallback_none) (void *, char *)

int (*callback_negatable) (int, void *, char *)

int (*callback_bool) (int, int, void *, char *)

int (*callback_int) (int, long, void *, char *)

int (*callback_float) (int, double, void *, char *)

int (*callback_string) (int, const char *, void *, char *)

int (*callback_file) (int, const char *, FILE *, void *, char *)

int (*callback_directory) (int, const char *, DIR *, void *, char *)

int (*callback_enum) (int, int, void *, char *)

int (*callback_subopt) (int, void *, char *)
If the corresponding callback for arg_type is set (see Section 2.4.1 [Option
Argument Types|, page 15), it will be called when the option is found. See
Section 2.5 [Option Callbacks], page 18, for a description of the arguments
these callbacks take and their return values.

Note: only one of the callbacks may be set at a time.
callback_none may only be used if has_arg is MU_OPT_NONE and

negatable is zero. callback_negatable may only be used if has_arg
is MU_OPT_NONE and negatable is nonzero.

void *cb_data
The data argument to pass to the above callbacks. See Section 2.5 [Option
Callbacks], page 18.
This field must not be used if arg_type is MU_OPT_SUBOPT (see Sec-
tion 2.7 [Parsing Suboptions|, page 25, and Section 2.4.1 [Option Ar-
gument Types|, page 15).



Chapter 2: Parsing Options and Environment 9

int (*cb_data_destructor) (void *data)
If cb_data contains dynamically allocated data or anything else that
needs to be released back to the system (e.g., file descriptors), set cb_
data_destructor to a function which will release all of that data, in-
cluding cb_data itself if it was dynamically allocated as well. If an error
occurred, e.g., when closing a file descriptor, cb_data_destructor should
return nonzero.

As a simple example, if cb_data was dynamically allocated but does not
contain dynamically allocated data, you can set this to a function which
will call free(data) and return 0.

This field must not be used if arg_type is MU_OPT_SUBOPT (see Sec-

tion 2.7 [Parsing Suboptions|, page 25, and Section 2.4.1 [Option Ar-
gument Types]|, page 15).

long ibound.lower

long ibound.upper
Lower and upper bounds (inclusive) for integer arguments. If you don’t
want any bounds, set ibound.lower to LONG_MIN and ibound.upper to
LONG_MAX.

These fields must only be used if arg_type is MU_OPT_INT (see Sec-
tion 2.4.1 [Option Argument Types|, page 15).

double fbound.lower

double fbound.upper
Lower and upper bounds (inclusive) for floating point arguments. If
you don’t want any bounds, set fbound.lower to -HUGE_VAL and
fbound.upper to HUGE_VAL.
These fields must only be used if arg_type is MU_OPT_FLOAT (see Sec-
tion 2.4.1 [Option Argument Types|, page 15).

const char *file_mode
The file mode to pass to fopen when opening a file argument. See Section
“Opening Streams” in libc.
This field must only be used if arg_type is MU_OPT_FILE (see Section 2.4.1
[Option Argument Types], page 15).

const MU_ENUM_VALUE *enum_values
The enumeration specification. See Section 2.6 [Parsing Enums], page 22,
for more information.
This field must only be used if arg_type is MU_OPT_ENUM (see Section 2.4.1
[Option Argument Types], page 15).

int enum_case_match
If this is nonzero, enumerated arguments will be matched against the
values in enum_values case sensitively. Otherwise, matching will be case
insensitive. See Section 2.6 [Parsing Enums|, page 22, for more informa-
tion.

This field must only be used if arg_type is MU_OPT_ENUM (see Section 2.4.1
[Option Argument Types]|, page 15).



Chapter 2: Parsing Options and Environment 10

const MU_OPT *subopts
This is a list of valid suboptions for this option. See Section 2.7 [Parsing
Suboptions]|, page 25.

This field must only be used if arg_type is MU_OPT_SUBOPT (see Sec-
tion 2.4.1 [Option Argument Types|, page 15).

const char *arg_help
This is a string which will be displayed in the help message as the argu-
ment for your option (see Section 2.11 [Formatting Help], page 37). For
example, ‘FILE’, ‘NAME’, or, if you're not feeling very imaginative, ‘ARG .
This field may not contain newlines (‘\n’).
If you leave this as NULL, a default will be chosen based on arg_type (see
Section 2.4.1 [Option Argument Types], page 15).

const char *help
The full help text for your option, used when formatting the help mes-
sage (see Section 2.11 [Formatting Help|, page 37). This text may make
references to the string passed in arg_help. There should be no newlines
in this string (even if it is quite long?) unless you really want a line break
in a certain place. Normally, you should just let line wrapping happen
automatically.

If this field is left as NULL, the option will not be documented in either
help or man output (see Section 2.11 [Formatting Help], page 37). Of
course, the option will still be parsed as usual.

const char *negated_help
The help text for the negated option. If this is left as NULL and help
(see above) is not NULL, it will default to ‘negate option’, where option
is the non-negated option or suboption (including aliases). However, if
negated_help is NULL and help is also NULL, neither the option nor the
negated option will be documented. If negated_help is non-NULL but
help is NULL, only the negated option will be documented.

This field may only be used if has_arg is MU_OPT_NONE and negatable
is nonzero.

2.2 Aliases for Options and Environment Variables

The fields long_opt, subopt_name, and env_var of the MU_OPT structure (see Section 2.1
[Option Structure|, page 5) allow aliases separated by ‘|’. The short_opt field allows
aliases to be specified as multiple characters in the string (which must be terminated by a
null byte).

For example, the string ‘abc’, when specified as the short_opt field, indicates three
equivalent short options: -a, -b, and —c. In the long_opt field, ‘foo | bar |baz’ would specify
three equivalent long options: --foo, --bar, and --baz. The same goes for subopt_name
and env_var (but see Section 2.8 [Parsing the Environment], page 28, for more information
on environment variable aliases).

2 You should try to keep the help text fairly short, though.



Chapter 2: Parsing Options and Environment 11

Duplicate aliases are not allowed, and will be diagnosed as an error. For example,
in the short_opt field, ‘abcb’ will be diagnosed because the ‘b’ is repeated. Likewise,
‘foolbar|foo’ would be diagnosed in any of the long_option, subopt_name, or env_var
fields. Empty aliases are diagnosed as well (including the entire string being empty). So
‘fool| | bar’ would be diagnosed in any of the long_option, subopt_name, or env_var fields,
because there is an empty alias between ‘foo’ and ‘bar’. In any of the same fields, in addition
to short_opt, the empty string (’) will be diagnosed as well. Leave a field as NULL if you
don’t want any options (or environment variables) of that type.

2.3 Negatable Options

A negatable option is an option which can be specified later on the command line in a
different form, to negate the effect of a previous specification. Short options are negated
using ‘+’ rather than ‘-’ to specify the option. Long options and suboptions must be prefixed
with ‘no-" or the specified negation prefixes (see Section 2.3.1 [Negation Prefixes|, page 13).
For example,

$ prog --foo --no-foo

should act as though --foo were never specified. Only negatable options can be negated.
For an option to be negatable, its negatable field must be set to a nonzero value (see
Section 2.1 [Option Structure|, page 5). Options that take arguments (i.e., options for
which the has_arg field is not MU_OPT_NONE) may not be negated. Indeed, setting the
negatable field to any value for an option which takes an argument results in undefined
behavior.

Environment variables may not be negated. The reason for this is because it is not easy
to control the order in which environment variables appear. Thus, if environment variable
negation were allowed and FOO were a negatable environment variable,

$ FOO= NO_F00= prog

may or may not act as though FOO were specified. So if an option for which the negatable
field is nonzero also has a non-NULL env_var field, NO_FOO will be ignored. Note, however,
that the callback_negatable callback should still be used (but it may be better not to use
callbacks at all; see below). Rather than having an env_var field for a negatable option,
it is instead better to make a separate environment variable that has a boolean value (see
Section 2.4.1 [Option Argument Types|, page 15).

Since environment variables may not be negated, specifying the negatable field for an
environment variable which has no equivalent options is useless. Because of this, it is not
allowed and will be diagnosed.

When option parsing is finished, the value that the found_opt field points to (if any) will
be nonzero if the last instance of the option found on the command line was not negated,
or zero if it was negated.

Negatable options should use the callback_negatable field if they are using a callback
(see Section 2.5 [Option Callbacks|, page 18), although it is usually preferable not to use a
callback. Suppose you have a certain negatable option, and you want to, say, open a file
when it is found. If you used a callback, you would need to open the file whenever value
was nonzero, and then close it again when it is zero. Although in this case this would be
fairly easy to implement (although far from ideal), it is still much better to simply wait



Chapter 2: Parsing Options and Environment 12

until option parsing is finished, and then check the value that the found_opt field points
to.

Here is an example illustrating how to parse negatable options:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x{new,free} */

/* Print a message when we find the negatable option. Usually, we
shouldn't use a callback for negatable options, but we are just
using it to print a message. */

static int print_negatable(int value, void *data, char *err) {

printf (" Found the negatable option, and it was%s negated.\n",
value ? " not" : "");
return O;

}

int main(int argc, char **argv) {
int found_negatable;

int ret;
const MU_OPT options[] = {
{
.short_opt = "n",
.long_opt = "negatable",
.has_arg = MU_OPT_NONE,
.negatable =1,
.found_opt = &found_negatable,
.callback_negatable = print_negatable
}’
{0}
};

MU_OPT_CONTEXT *context;

/* Parse the options. */
context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE) ;
ret = mu_parse_opts(context);
mu_opt_context_xfree(context) ;
if (MU_OPT_ERR(ret))
return 1;

printf ("It appears that the negatable option was’%s given.\n",
found_negatable ? "" : " not");

return O;

}

Here is the output of the above program:

$ ./option-negatable

- It appears that the negatable option was not given.

$ ./option-negatable --negatable -n --no-negatable +n
Found the negatable option, and it was not negated.
Found the negatable option, and it was not negated.
Found the negatable option, and it was negated.
Found the negatable option, and it was negated.

It appears that the negatable option was not given.

./option-negatable -n +n --negatable
Found the negatable option, and it was not negated.
Found the negatable option, and it was negated.
Found the negatable option, and it was not negated.

11 1% 1111



Chapter 2: Parsing Options and Environment 13

-1 It appears that the negatable option was given.

2.3.1 Negation Prefixes

By default, long options and suboptions are negated by prefixing them with ‘no-’ (see
Section 2.3 [Negatable Options|, page 11). However, alternative negation prefixes may be
specified as well. For example, you might want to parse options in a similar style to XBoard,
with options negated by a single ‘x’ (see Section “Options” in xboard).

Negation prefixes, like regular options, are case sensitive. Thus, if you have a negation
prefix of ‘no-’, ‘No-’ will not be recognized (or will be treated as a separate option).

int mu_opt_context_set_no_prefixes (MU_OPT_CONTEXT [Function]
xcontext, ...)

int mu_opt_context_set_no_prefix_array (MU_OPT_CONTEXT [Function]
xcontext, char *xstrings)

int mu_subopt_context_set_no_prefixes (MU_SUBOPT_CONTEXT [Function]
xcontext, ...)

int mu_subopt_context_set_no_prefix_array [Function]

(MU_SUBOPT_CONTEXT *context, char **strings)
Set a list of negation prefixes in context. In the case of mu_opt_context_set_no_
prefixes and mu_subopt_context_set_no_prefixes, the negation prefixes are spec-
ified in the variable arguments. In the case of mu_opt_context_set_no_prefix_
array and mu_subopt_context_set_no_prefix_array, the negation prefixes are
specified in strings. In both cases, the list of negation prefixes must be terminated by
NULL.

Duplicate negation prefixes are not allowed. If duplicates are present in strings or
the variable arguments, errno will be set to EINVAL and these functions will return
nonzero.

Subsequent calls to these functions are allowed, but will overwrite negation prefixes
set by previous calls. However, it is not allowed to call these functions after context
has been passed to mu_parse_opts or mu_parse_subopts.

Here is an example of how alternative negation prefixes may be used:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x* */

/* Print a message when we find the negatable option. */
static int print_negatable(int value, void *data, char *err) {

printf (" Found the negatable option, and it was)s negated.\n",
value ? " not" : "");
return O;
}
int main(int argc, char **argv) {
int ret;
const MU_OPT options[] = {
{
.short_opt = "n",
.long_opt = "negatable",
.has_arg = MU_OPT_NONE,



Chapter 2: Parsing Options and Environment 14

.negatable =1,
.callback_negatable = print_negatable
}’
{01}

};
MU_OPT_CONTEXT *context;

context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE) ;

/* Set the negation prefixes. This must be done *beforex
mu_parse_opts() is called. */
mu_opt_context_xset_no_prefixes(context, "negate-", "no-", "x", NULL);

/* Now parse the options. */
ret = mu_parse_opts(context);
mu_opt_context_xfree(context) ;
if (MU_OPT_ERR(ret))

return 1;

return O;
}
And the output:

$ ./negation-prefixes --negatable

— Found the negatable option, and it was not negated.

$ ./negation-prefixes --negate-negatable

n Found the negatable option, and it was negated.

$ ./negation-prefixes --no-negatable

n Found the negatable option, and it was negated.

$ ./negation-prefixes --xnegatable

- Found the negatable option, and it was negated.

$ ./negation-prefixes --foo-negatable

./negation-prefixes: '--foo-negatable': invalid option

2.4 Option Arguments

Options can take arguments and environment variables can have values (see Section 2.8
[Parsing the Environment], page 28). Some options and environment variables require
arguments or values, while others may optionally take arguments or have values, while
still others might take no arguments at all or not allow any values. Mu supports all of
these types of options and environment variables through the has_arg field of the MU_OPT
structure (see Section 2.1 [Option Structure], page 5).

enum MU_OPT_HAS_ARG [Enumerated Type]
MU_OPT_NONE
This indicates that an option takes no arguments. If the MU_OPT_BUNDLE
flag (see Section 2.9 [Option Parsing Flags], page 31) is not specified,
then any text following a short option which doesn’t take an argument
will be an error.> An ‘=’ is an error in a long option that does not take
an argument, because ‘=’ is used to specify arguments to long options.

xhas_arg will always be set to 0 if has_arg is not NULL.

3 But only if the text following the short option is in the same argument as the option itself, e.g., —ofoo,
not -o foo. If the following text is in a new argument, as in the latter case, it will be treated as a
positional argument, not an argument to -o.



Chapter 2: Parsing Options and Environment 15

MU_OPT_OPTIONAL

This indicates that an option may take an argument, but that the op-
tion doesn’t require an argument. Even if the MU_OPT_BUNDLE flag is
passed (see Section 2.9 [Option Parsing Flags], page 31), short options
with optional arguments may not be bundled except as the last option
in a bundle. The reason for this is as follows: Suppose short option b
takes an optional argument. And suppose short options a and c take no
argument. Now what should -abc mean (assuming MU_OPT_BUNDLE was
passed)? Is it three options without arguments, a, b, and c¢? Or is it two
options, a and b, the latter of which taking an argument, ‘c’? It is in fact
the latter, two options a and b, with b taking an argument, ‘c’. Note,
however, that if b is specified as the last option like so: -acb, there is no
ambiguity, because there is nothing following the b option (and if there
is text following it in another argument, it will be treated as a positional
argument; see below).

Short options taking an optional argument must have their arguments
specified with the option itself. For example, if a short option, b, takes an
optional argument, it must be specified as -barg, not -b arg. The reason
for this is because -b arg could be a short option b with an argument
arg, or a short option b with no argument, and a positional argument
arg. Likewise, long options taking optional arguments must be specified
as —-long=arg, not -—-long arg.

If has_arg is not NULL, then *has_arg will be set to 1 if the option has
an argument, or 0 if the option doesn’t have an argument.

MU_OPT_REQUIRED
This indicates that an option requires an argument. If no argument is
specified, it is an error. Like short options with optional arguments, short
options with required arguments may not be bundled except as the last
option in a bundle. See above for an explanation.

For short options with required arguments, the argument may be passed
with the option itself like so: -rarg, or immediately after the argument
like so: -r arg. Arguments to long options with required arguments
may also be specified with the option itself like so: --required=arg, or
immediately after the argument like so: --required arg.

xhas_arg will always be set to 1 if has_arg is not NULL.

2.4.1 Option Argument Types

Mu supports several option types, and more may be added in the future. These types will
automatically be processed from the string argument, and the processed argument will be
returned in *arg if arg is not NULL (see Section 2.1 [Option Structure|, page 5). arg should
be a pointer to a value of the type indicated by the arg_type field, which must be one of
the values in the table below. However, if arg_type is MU_OPT_SUBOPT, arg must not be
used (see Section 2.7 [Parsing Suboptions|, page 25). If an error occurs while processing
an argument, an error message will be printed to standard error, and mu_parse_opts will
return an error code (see Section 2.12 [Option Parsing Errors|, page 44).



Chapter 2: Parsing Options and Environment 16

Unless otherwise specified, *argstr will be set to the unprocessed string argument if
argstr is not NULL (see Section 2.1 [Option Structure], page 5). However, if arg_type is
MU_OPT_SUBOPT, argstr must not be used.

You can also parse your own types using callbacks (see Section 2.5 [Option Callbacks],
page 18).

enum MU_OPT_ARG_TYPE [Enumerated Type]

MU_OPT_BOOL
This is a boolean value. The type of *arg should be int and bool_
default should be used for the default value (see Section 2.1 [Option
Structure], page 5). If MU_OPT_BOOL is given in the arg_type field, the
argument can either be ‘yes’ or ‘true’ for a true value, or ‘no’ or ‘false’
for a false value. Matching is case insensitive and allows abbreviation.

If the argument is none of ‘yes’, ‘no’, ‘true’, or ‘false’, it will be parsed
as an integer (see below). Zero is false and any other integer is true.

If the argument is not an integer either, that will be an error.

MU_OPT_INT

This is an integer value. The type of *arg should be long and int_
default should be used for the default value (see Section 2.1 [Option
Structure|, page 5). The radix (or base) that the argument is parsed
as depends on the first non-whitespace characters after an optional ‘+’
or ‘=’ sign. If these characters are ‘0x’ or ‘0OX’, the integer is parsed as
hexadecimal. Otherwise, if the first character is ‘0’, and the following
character is not ‘x’ or ‘X’, the integer will be parsed as octal. Otherwise,
the integer will be parsed as decimal. See Section “Parsing of Integers”
in 1libc for more information on how integers are parsed.

If the parsed integer is outside the bounds specified by the ibound field
(see Section 2.1 [Option Structure], page 5), then that will be treated as
an error.

MU_OPT_FLOAT

This is a floating-point value. The type of *arg should be double and
float_default should be used for the default value (see Section 2.1 [Op-
tion Structure], page 5). The radix (or base) that the argument is parsed
as depends on the first non-whitespace characters after an optional ‘+’
or ‘=7 sign. If these characters are ‘0x’ or ‘0X’, the number is parsed as
hexadecimal. Otherwise, if the first character is ‘0’, and the following
character is not ‘x’ or ‘X’, the number will be parsed as octal. Otherwise,
the number will be parsed as decimal. See Section “Parsing of Floats”
in 1ibc for more information on how floating-point numbers are parsed.
See Section “Parsing of Floats” in libc for more information on how
floating-point numbers are parsed.

If the parsed floating-point numebr is outside the bounds specified by the
fbound field (see Section 2.1 [Option Structure], page 5), then that will
be treated as an error.



Chapter 2: Parsing Options and Environment 17

MU_OPT_STRING
This is a string value. The type of *arg should be const char * and
string_default should be used for the default value (see Section 2.1
[Option Structure], page 5) (i.e., the type of arg should be const char
*x). *argstr (if argstr is not NULL) will be set to the same value as
*arg.

MU_OPT_FILE
This is a file argument. The type of *arg should be FILE * (i.e., the
type of arg should be FILE **) and file_default should be used for
the default value (see Section 2.1 [Option Structure], page 5). file_mode
should be used for this type and only for this type (see Section 2.1 [Option
Structure], page 5).

file_mode describes the mode to use when opening the file, and how ‘-’
should be handled. If file_mode indicates that the file should be opened
in read-only mode, ‘=’ will be handled as standard input. If file_mode
indicates that the file should be opened in write-only mode, ‘=’ will be
handled as standard output. If file_mode indicates that the file should
be opened for both reading and writing, ‘=’ will cause an error.

If argstr is not NULL, *argstr will be set to ‘<stdin>’ if ‘~” was handled
as standard input, ‘<stdout>’ if ‘-’ was handled as standard output, or
the file name given as the argument to the option if the argument was
not ‘-’.

If an error occurs while opening a file, an error message will be printed
to standard error and mu_parse_opts will return an error code (see Sec-
tion 2.12 [Option Parsing Errors|, page 44).

For more information on how files are opened and how file_mode is
parsed, see Section “Opening Streams” in libc.

MU_OPT_DIRECTORY
This is a directory argument. The type of *arg should be DIR * (i.e.,
the type of arg should be DIR **) and dir_default should be used for
the default value (see Section 2.1 [Option Structure], page 5). See Sec-
tion “Opening a Directory Stream” in 1ibc for more information on how
directories are opened.

If you'd like to know the name of the directory as given as the argu-
ment to the option, you can use the argstr field (see Section 2.1 [Option
Structure], page 5).

If an error occurs while opening a directory, an error message will be
printed to standard error and mu_parse_opts will return an error code
(see Section 2.12 [Option Parsing Errors], page 44).

MU_OPT_ENUM
This is an enumerated argument. The enumeration specification is the
enum_values field (see Section 2.1 [Option Structure], page 5).

For more information, See Section 2.6 [Parsing Enums|, page 22.



Chapter 2: Parsing Options and Environment 18

MU_OPT_SUBOPT
This indicates that the option takes suboptions as arguments. Subop-
tions may not take suboptions as arguments. See Section 2.7 [Parsing
Suboptions], page 25, for more information.

2.5 Option Callbacks

Option callbacks are useful when you have more advanced option parsing needs. Each
option argument type has a different callback. There are also callbacks for options which
don’t take arguments: callback_none for non-negatable options, and callback_negatable
for negatable options (see Section 2.3 [Negatable Options], page 11). All callback names
mentioned are members of the MU_OPT structure.

For a callback that is called when a positional argument is seen, use mu_opt_context_
set_arg_callback (see Section 2.10 [Ordered Option Parsing], page 33).

The callback names and prototypes for each argument type are listed below (although
MU_OPT_NONE is not a type, and should be passed in the has_arg field of the MU_OPT struc-
ture, not the arg_type field):

MU_OPT_NONE
If the negatable field is zero (see Section 2.1 [Option Structure], page 5):
int (*callback-none) (void *data, char *err)
Otherwise, if negatable is nonzero:
int (*callback_negatable) (int value, void *data, char *err)

MU_OPT_BOOL
int (*callback_bool) (int has_arg, int arg, void *data, char *err)

MU_OPT_INT
int (*callback_int) (int has_arg, long arg, void *data, char *err)

MU_OPT_FLOAT
int (*callback_float) (int has_arg, double arg, void *data, char *err)

MU_OPT_STRING
int (*callback_string) (int has_arg, const char *arg, void *data, char *err)

MU_OPT_FILE
int (*callback_file) (int has_arg, const char *filename, FILE *file, void *data,
char *err)

MU_OPT_DIRECTORY
int (*callback_directory) (int has_arg, const char *dirname, DIR *directory,
void *data, char *err)

MU_OPT_ENUM
int (*callback_enum) (int has_arg, int arg, void *data, char *err)

MU_OPT_SUBOPT
int (*callback_subopt) (int has_arg, void *data, char *err)

A callback will be called as soon as an option is found, so callbacks are guaranteed to
be called in the same order as the options appear on the command line. This means that



Chapter 2: Parsing Options and Environment 19

if an option takes suboptions as arguments, the callback for the main option will be called
before the callbacks for the suboptions (see Section 2.7 [Parsing Suboptions|, page 25).
The has_arg parameter will be passed as 1 if the option has an argument, or O if the
option doesn’t have an argument (except for callback_none which doesn’t have a has_arg
parameter).

If the option has an argument, arg will be set to that argument, except in the case
of suboptions (see Section 2.7 [Parsing Suboptions], page 25). In the case of callaback_
file and callback_directory, filename or dirname will be set to the name of the file
or directory respectively.* For callback_negatable, value will be zero if the option was
negated, or nonzero if it wasn’t (see Section 2.3 [Negatable Options], page 11).

If you need to provide extra information to a callback, provide it in the cb_data field
of the MU_OPT structure. This will then be passed as the data parameter to a callback.
Note: a callback should not free this parameter even if it is dynamically allocated. In the
case that cb_data is dynamically allocated and/or contains dynamically allocated data, you
should also set the cb_data_destructor field to a function which will free all dynamically
allocated data in cb_data.

When you call mu_opt_context_free (see Chapter 2 [Parsing Options and Environ-
ment|, page 3) or mu_subopt_context_free (see Section 2.7 [Parsing Suboptions], page 25),
each cb_data_destructor field is called with the corresponding cb_data in order to free
that data. If an error occurs while freeing callback data (for example, an error closing a
file), cb_data_destructor should return nonzero. Otherwise, cb_data_destructor should
return zero.

For callback_file and callback_directory, the file or directory argument will be
closed after the callback returns if you leave the arg field of the MU_OPT structure as NULL
(see Section 2.1 [Option Structure], page 5). So you must not close the file or directory
argument in the callback.

You also must not use the cb_data field to get the opened file/directory. For example,
the following code is wrong:

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <mu/options.h>

#include <mu/safe.h> /* For mu_opt_context_x{new,free} */

int file_callback(int has_arg, const char *filename,
FILE *file, void *data, char *err) {
/* Make sure the file is named "foo". */
if (strcmp(filename, "foo")) {
snprintf (err, MU_OPT_ERR_MAX, "file is not named \"foo\"");
return 1;

}

/* It is named "foo"; return “file' in “*data'.
This is WRONG! Do not do this! */

*(FILE **)data = file;

return O;

4 However, for callback_file, filename might be ‘<stdin>’ or ‘<stdout>’ when file is standard input or
standard output respectively. See Section 2.4.1 [Option Argument Types|, page 15.



Chapter 2: Parsing Options and Environment

}

int main(int argc, char *xargv) {

}

FILE *file = NULL;
char buf[256];
size_t size;

int ret;
const MU_OPT options[] = {
{
.short_opt = "f",
.long_opt = "file",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_FILE,
.file_mode = "r",
.callback_file = file_callback,
.cb_data = &file
}7
{0}
};

MU_OPT_CONTEXT *context;

/* Parse the options. */
context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE);
ret = mu_parse_opts(context);
mu_opt_context_xfree(context);
if (MU_OPT_ERR(ret))
return 1;

if (Ifile) {
/* We weren't passed the “-f' option. */
return O;

}

/* Read the file. This invokes UNDEFINED BEHAVIOR because
“file' was already closed by “mu_parse_opts'! */

size = fread(buf, sizeof (x¥buf), sizeof (buf), file);
if (ferror(file)) {

fprintf (stderr, "Js: cannot read foo: %s\n",

argv[0], strerror(errno));

return 1;
}
fclose(file);

/* Print the contents of the file to standard output. */
furite(buf, sizeof (¥buf), size, stdout);

return O;

20

When this program is run, it invokes undefined behavior. The correct way to do this is to
not use the cb_data field, and instead set the arg field to &file. This way, mu_parse_opts
will not close the file or directory after the callback returns.

If a callback needs to indicate an error (if its argument is in the wrong format, for

example), it should return nonzero. Otherwise, on success, it should return 0. If a callback
returns nonzero, you must write an error string to err which will then be used by mu_parse_
opts to print an error message. You must not write more than MU_OPT_ERR_MAX characters



Chapter 2: Parsing Options and Environment 21

to err (including the terminating null byte). However, if you write exactly MU_OPT_ERR_MAX
bytes to err, you need not terminate err with a null byte.

Below is an example of how to use callbacks. Of course, this trivial example would
be better expressed using enumerated argument parsing (see Section 2.6 [Parsing Enums],
page 22).

#include <stdio.h>
#include <string.h>

#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x{new,free} */

enum selection { F0O, BAR, BAZ };

/* Parse a selection. “has_arg' will always be true because the option
takes a required argument. */
int parse_selection(int has_arg, const char *arg,
void *data, char *err) {
enum selection sel;

if (!strcmp(arg, "foo"))

sel = F0O;

else if (!strcmp(arg, "bar"))
sel = BAR;

else if (!strcmp(arg, "baz"))
sel = BAZ;

else {

/* “err' will be used by “mu_parse_opts' to print an error
message. */

snprintf (err, MU_OPT_ERR_MAX, "invalid selection: %s", arg);

/* Indicate to “mu_parse_opts' that an error occured by returning
a nonzero value. */

return 1;

}

/* Store the selection in ~*data'. */
*(enum selection *)data = sel;

/* Success! */
return O;

}

int main(int argc, char *xargv) {
enum selection sel;
int found_sel;

int ret;
const MU_OPT options[] = {
{
.short_opt = "g",
.long_opt = "selection",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_STRING,
.found_arg = &found_sel,
.callback_string = parse_selection,
.cb_data = &sel
},
{01}
};

MU_OPT_CONTEXT *context;



Chapter 2: Parsing Options and Environment 22

/* Parse the options. */
context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE);
ret = mu_parse_opts(context) ;
mu_opt_context_xfree(context);
if (MU_OPT_ERR(ret))
return 1; /* “mu_parse_opts' will print an error message for us */

if (found_sel) {
/* Print the selection. */
fputs("You selected: ", stdout);
switch (sel) {
case F0O:
puts("FO0O");
break;
case BAR:
puts("BAR");
break;
case BAZ:
puts("BAZ");
break;
default:
puts("an unknown value!"); /* This should not happen */
}
}
else
puts("You didn't select anything.");

return O;

}

Here is what the output of the example program looks like:

$ ./option-callback

You didn't select anything.

./option-callback -s foo

You selected: FOO

./option-callback --selection=bar

You selected: BAR

./option-callback -s qux

./option-callback: invalid selection: qux

$ ./option-callback -s

./option-callback: '-s': option requires argument

® 8, ¥

2.6 Parsing Enumerated Arguments to Options

It is often useful to have an option which takes an argument which is a string that is
restricted to a set of values. For example, GNU 1s (and many other programs) take a
--color option, which has an argument that can be ‘always’, ‘auto’, or ‘never’ (in addition
to various synonyms). Mu supports similar argument parsing, called enumerated arguments.

Names and values for enumerated types are specified in the enum_values field of the
MU_OPT structure (see Section 2.1 [Option Structure], page 5). enum_values is an array
of MU_ENUM_VALUE structures as defined below. enum_values is terminated by an element
with a name field of NULL.

If the enum_case_match field of the MU_OPT structure is nonzero (see Section 2.1 [Option
Structure|, page 5), matching is case sensitive. Otherwise, matching is case insensitive.



Chapter 2: Parsing Options and Environment 23

Like long options and suboptions, abbreviation is allowed when passing enumerated
arguments, as long as it is not ambiguous.

MU_ENUM_VALUE

[Data Type]

Unlike MU_OPT (see Section 2.1 [Option Structure], page 5), this structure is simple
and it’s organization is guaranteed. Therefore, you may use positional initializers
to initialize this structure. Of course, you can still use designated initializers if you

prefer.

const char *name

int value

This field specifies the name to match against when parsing the argument.
Like long options, suboptions, and environment variables, name may have
aliases separated by ‘|’ (see Section 2.2 [Option Aliases|, page 10). Alter-
natively, aliases can be specified by using separate entries with the same
value (see below).

Duplicates in this field, either duplicate aliases or duplicates between
entries, are not allowed. Note that if enum_case_match is zero, case is not
considered. So, if enum_case_match is zero, you cannot have two entries,
‘foo’ and ‘FOO’, nor can you have two aliases specified as ‘foo|F00’.

This is the value of the enumeration. It is the value passed as the arg pa-
rameter of callback_enum (see Section 2.5 [Option Callbacks|, page 18),
and, if the arg field of the MU_OPT structure is not NULL, it is the value
stored in *arg.

The following example illustrates how to use both case insensitive enumerated argument
parsing, and case sensitive enumerated argument parsing:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x{new,free} */

enum selection { FO00, BAR, BAZ };

int main(int argc, char **argv) {
enum selection sel;
int found_sel;

int ret;

const MU_ENUM_VALUE enum_table[] = {
/* Aliases can be specified for enumerated arguments. */
{ "foolalias-foo", FOO },
{ "bar", BAR },
/* Aliases can alternatively be specified like this. */
{ "alias-bar", BAR 1},
{ "baz", BAZ },
/* This terminates the enumeration specification. */

{0}
}
const MU_OPT options[] = {
{
.short_opt = "s",
.long_opt = "selection",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_ENUM,

/* This indicates that matching should be case insensitive. */



Chapter 2: Parsing Options and Environment 24

.enum_case_match = 0,

.enum_values = enum_table,
.found_arg = &found_sel,
.arg = &sel

}7

{
.short_opt = "c",
.long_opt = "case-selection",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_ENUM,

/* This indicates that matching should be case sensitive. */
.enum_case_match = 1,

.enum_values = enum_table,
.found_arg = &found_sel,
.arg = &sel
},
{01}
};

MU_OPT_CONTEXT *context;

/* Parse the options. */
context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE);
ret = mu_parse_opts(context);
mu_opt_context_xfree(context);
if (MU_OPT_ERR(ret))
return 1;

if (found_sel) {
/* Print the selection. */
fputs("You selected: ", stdout);
switch (sel) {
case F0O:
puts("FO0") ;
break;
case BAR:
puts("BAR");
break;
case BAZ:
puts("BAZ");
break;
default:
/* This is guaranteed not to happen. */
puts("an unknown value!");
}
}
else
puts("You didn't select anything.");

return O;

}

Here is the output of the above example, to show exactly how enumerated arguments
are parsed:

$ ./option-enum --selection=foo

You selected: FOO

./option-enum --selection=alias-foo
You selected: FOO

./option-enum --selection=alias-bar

-
$
-
$



Chapter 2: Parsing Options and Environment 25

-1 You selected: BAR
$ ./option-enum --selection=bAr
-1 You selected: BAR
$ ./option-enum --selection=Ba

error ./option-enum: 'Ba': argument for '--selection' is ambiguous; possibilities:
error bar
error baz

$ ./option-enum --selection=qux
./option-enum: 'qux': invalid argument for '--selection'; must be one of 'foo',
$ ./option-enum --case-selection=Fo0

'par’',

'alias-baz

./option-enum: 'Fo0': invalid argument for '--case-selection'; must be one of 'foo', 'bar', 'ali:

$ ./option-enum --case-selection=foo
- You selected: FOO

2.7 Parsing Suboptions

Sometimes you may want to have an option which takes suboptions as arguments. You
can do this through the subopts field of the MU_OPT structure. The subopts field is a list
of MU_OPTs, terminated by a suboption with all fields equal to 0. Suboptions are in every
way like regular options, except that they may not have suboptions of their own and they
must use the subopt_name field instead of short_opt or long_opt. See Section 2.1 [Option
Structure], page 5.

Suboptions may also specify the env_var field for an equivalent environment variables as
well. Environment variables may also take suboptions as a value. See Section 2.8 [Parsing
the Environment], page 28.

Note: even though environment variables may be specified for suboptions, you may not
have a suboption which only specifies an environment variable. I.e., you may not have a
suboption which has no subopt_name field (such an option will be considered as a terminator
for the suboption list). If you want to do this, use a regular option instead.

Options which take suboptions as arguments may use the callback_subopt field as a
callback (see Section 2.5 [Option Callbacks|, page 18). If a callback is used and the option is
found on the command line (or in the environment for an environment variable), the callback
for that option is guaranteed to be called before any callbacks for the suboptions themselves.
Note, however, that if a suboption has an equivalent environment variable (using the env_
var field), the callback for the option which takes that suboption as an argument will not be
called at all (though the callback for the suboption will be called). Indeed, it is impossible
to call the callback for the option which takes the suboption as an argument, because two
different options with different callbacks may take the same suboptions as arguments. Nor
would it make any sense, because the option never actually appeared on the command line
(or environment).

Suboptions are specified as a comma-separated list, with ‘=" used to specify arguments.
The commas must not contain spaces around them, and arguments cannot be specified any
other way than with ‘=’.

Suboptions, like long options, may be abbreviated as long as they are not ambiguous.
Note that this is in contrast to getsubopt, which does not allow abbreviation (see Section
“Suboptions” in libc).

Like regular options, suboptions should use the help field, which will be used in the help
message (see Section 2.11 [Formatting Help|, page 37, and Section 2.1 [Option Structure],



Chapter 2: Parsing Options and Environment 26

page 5). Suboptions may also use the arg_help field if they take arguments (see Section 2.4
[Option Arguments], page 14).

Normally, suboptions are parsed by mu_parse_opts from an argument to a regular
option, using the subopts field. However, you may also parse suboptions in a user-specified
string as well. Doing so is not too dissimilar from parsing regular options.

MU_SUBOPT_CONTEXT [Data Type]
This is an opaque context for parsing suboptions. It is allocated using mu_subopt_
context_new and freed using mu_opt_context_free.

MU_SUBOPT_CONTEXT * mu_subopt_context_new (const char [Function]
*prog_name, const char *suboptstr,
const MU_OPT *subopts)

Allocate and return a new suboption parsing context. The name the program was
invoked as should be passed in prog_name (normally argv[0]), and is used for error
reporting.

The suboptions will be parsed in suboptstr. A copy of suboptstr will be made, so you
need not worry about it going out of scope or being modified (this copy will be freed
by mu_subopt_context_free). The suboptions are specified in subopts.

int mu_subopt_context_free (MU_SUBOPT_CONTEXT *context) [Function]
Free the suboption context, context. Callback data is freed as for mu_opt_context_
free (see Chapter 2 [Parsing Options and Environment|, page 3). Like mu_opt_
context_free, mu_subopt_context_free will return nonzero if any of the destruc-
tors returned nonzero, or zero if all destructors returned zero. Also like mu_opt_
context_free, all destructors are called even if one or more of them return nonzero.

int mu_parse_subopts (MU_SUBOPT_CONTEXT *context) [Function]
Parse the suboptions given in context. Use mu_subopt_context_new (see above)
to create the context. Zero is returned on success, or an error code on error (see
Section 2.12 [Option Parsing Errors|, page 44).

Note that you may not call this function more than once. To do so is an error and
will be diagnosed.

The following example illustrates the use of suboptions:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x* */

int subopt_none(void *data, char xerr) {
puts("suboption found: none");
return O;

}

int subopt_opt(int has_arg, const char *arg,
void *data, char *err) {
puts("suboption found: opt");
if (has_arg)
printf ("argument: %s\n", arg);
return O;

}



Chapter 2: Parsing Options and Environment

int subopt_req(int has_arg, const char *arg,
void *data, char *err) {
printf ("suboption found: req\nargument: %s\n", arg);
return O;

}

int main(int argc, char *xargv) {

int ret;

/* These are the suboptions that can be passed to the “-o'
option. They are specified just like regular options, except
that “subopt_name' is used instead of “long_opt' or
“short_opt', and they may not have suboptions of their

own. */
const MU_OPT suboptions[] = {
{
.subopt_name = "none",
.has_arg = MU_OPT_NONE,
.callback_none = subopt_none,
.help = "a suboption taking no arguments"
},
{
.subopt_name = "opt",
.has_arg = MU_OPT_OPTIONAL,
.arg_type = MU_OPT_STRING,
.callback_string = subopt_opt,
.help = "a suboption taking an optional argument"
1,
{
.subopt_name = "req",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_STRING,
.callback_string = subopt_req,
.help = "a suboption taking a required argument"
}’
{07}
};
const MU_OPT options[] = {
{
.short_opt = "o",
.long_opt = "options",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_SUBOPT,
.subopts = suboptions,
.help = "a regular option which takes suboptions"
}7
{0}
};

MU_OPT_CONTEXT *context;

context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE) ;

/* Add the help option. */

mu_opt_context_add_help(context, NULL, NULL, "Parse suboptions.",
NULL, "1", NULL, NULL, NULL);

mu_opt_context_xadd_help_options(context, MU_HELP_BOTH);

/* Parse the options. */

27



Chapter 2: Parsing Options and Environment 28

ret = mu_parse_opts(context) ;
mu_opt_context_xfree(context);
if (MU_OPT_ERR(ret))

return 1;

return O;

}

And here is the output of the example program (note, the COLUMNS environment variable
is set to 65 so that the help message will look good in this manual):

$ COLUMNS=65

$ export COLUMNS

./subopts -o none,opt=foo

suboption found: none

suboption found: opt

argument: foo

./subopts -o req

./subopts: 'req': suboption requires argument

® 11"

$ ./subopts --help

| Usage: ./subopts [OPTION]...

-| Parse suboptions.

_{

- Mandatory arguments to long options are mandatory for short options too.

B -0, -—options=SUBOPTS a regular option which takes suboptions

B -h, --help[=plain|man] print this help in plain text format if 'plain', or as a man(l) page if
B 'man’'; if the argument is omitted, it will default to 'plain'.
_{

—-| Suboptions for -o, --optioms:

- none a suboption taking no arguments

- opt [=STRING] a suboption taking an optional argument

B req=STRING a suboption taking a required argument

2.8 Parsing the Environment

In addition to parsing options, mu_parse_opts supports parsing environment variables as
well. Environment variables are specified using the env_var field (see Section 2.1 [Option
Structure], page 5). Values of environment variables are specified in the same way as
arguments are specified to options (see Section 2.4 [Option Arguments], page 14).

Unlike options, environment variables are parsed in the program environment (or the
environment parameter to mu_opt_context_new_with_env), rather than in argv (see Chap-
ter 2 [Parsing Options and Environment|, page 3). And unlike long options and suboptions,
environment variables may not be abbreviated. And whereas an invalid option will cause
an error, an invalid environment variable will be ignored.

Environment variables may be specified for suboptions, and an environment variable may
take suboptions as a value as well. For example, you might have an environment variable,
ENV, which takes a suboption foo, which itself takes an optional string argument, say. And
suppose foo has an equivalent environment variable, ENV_FO0. Then you might specify a
value ‘bar’ to the foo suboption either by specifying a value to ENV like this: ENV=foo=bar,
or by specifying a value directly to ENV_FOO like this: ENV_F0O=bar. The example shows
how to do this as well. See Section 2.7 [Parsing Suboptions|, page 25, for more information
on suboptions.

Environment variables are always parsed before command line options. Environment
variables and long/short options may be specified in the same option, but if this is the case,



Chapter 2: Parsing Options and Environment 29

the command line option(s) will take precedence over the environment variable, since the
environment variables will always be parsed first.

If an environment variable has aliases (see Section 2.2 [Option Aliases|, page 10), aliases
specified first will take precedence. For example, if an environment variable is specified
as ‘FOO|BAR’, and both FOO and BAR are in the environment, then the value of FOO will
take precedence because it was specified as an alias before BAR. Note also that if both
FOO and BAR are specified in the environment, the value of BAR will be completely ignored.
The callback (if any) will only be called once, for FOO (see Section 2.5 [Option Callbacks],
page 18).

Another thing to note is that if you have an environment variable with a has_arg value
of MU_OPT_NONE, then if that environment variable is encountered, and it has a value other
than the empty string, that will cause an error. This is not very user-friendly behavior,
and you might consider using a has_arg of MU_OPT_OPTIONAL and an arg_type of MU_OPT_
BOOL. Then, if the environment variable has no value, you can default to true. This is more
user-friendly, because things like ENV_VAR=yes or ENV_VAR=no will do what is expected
(assuming your environment variable is called ENV_VAR).

Traditionally, environment variable names are in ALL CAPS.

Here is an example of how environment variables can be parsed:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x* */

/* Print a message when an option is found. */
int print_opt(int has_arg, const char *arg,
void *data, char *err) {
const char *name = data;

printf ("Found an option/environment variable 'Y%s'", name);
if (has_arg)
printf (" with an argument 'Js'", arg);
putchar('\n');
return O;
}
int main(int argc, char *xargv) {
int ret;
const MU_OPT suboptions[] = {
{
.subopt_name = "subopt",
/* Suboptions can have environment variables as well. */
.env_var = "ENV_SUBOPT",
.has_arg = MU_OPT_OPTIONAL,
.arg_type = MU_OPT_STRING,
.callback_string = print_opt,
.cb_data = "a suboption",
.help =
"a suboption with an equivalent environment variable"
}’
{01}
3
const MU_OPT options[] = {
{
.short_opt "a",

.long_opt "an-option",



Chapter 2: Parsing Options and Environment 30

/* AN_ENV_VAR will always take precedence over ALIAS since it is
specified first below. */

.env_var = "AN_ENV_VAR|ALIAS",

.has_arg = MU_OPT_OPTIONAL,

.arg_type = MU_OPT_STRING,

.callback_string = print_opt,

.cb_data = "an option",

.help =

"an option with an equivalent environment variable"
}’
{

.short_opt = "b",

.long_opt = "another-option",

.has_arg = MU_OPT_OPTIONAL,

.arg_type = MU_OPT_STRING,

.callback_string = print_opt,

.cb_data = "another option",

.help =

"an option without an equivalent environment variable"
}!
{

.env_var = "ANOTHER_ENV_VAR",

.has_arg = MU_OPT_REQUIRED,

/* Environment variables can have suboptions as well. */
.arg_type = MU_OPT_SUBOPT,

.subopts = suboptions,

.help =

"an environment variable (which takes "
"suboptions) without an equivalent option"
}!
{01}
};
MU_OPT_CONTEXT *context;

context = mu_opt_context_xnew(argc, argv, options, MU_OPT_PERMUTE);

/* Add the help option. */
mu_opt_context_add_help(context, NULL, NULL,
"Parse options and environment variables.",
NULL, "1", NULL, NULL, NULL);
mu_opt_context_xadd_help_options(context, MU_HELP_BOTH);

/* Parse the options. */
ret = mu_parse_opts(context);
mu_opt_context_xfree(context) ;
if (MU_OPT_ERR(ret))

return 1;

return O;

}

And here is the output of the above program (note, the COLUMNS environment variable
is set to 65 so that the help message will look good in this manual):

$ COLUMNS=65

$ export COLUMNS

$ AN_ENV_VAR=foo ./environ --an-option=bar --another-option=baz

-| Found an option/environment variable 'an option' with an argument 'foo'
- Found an option/environment variable 'an option' with an argument 'bar'’



Chapter 2: Parsing Options and Environment 31

- Found an option/environment variable 'another option' with an argument 'baz'
$ ANOTHER_ENV_VAR=subopt=foo ./environ

- Found an option/environment variable 'a suboption' with an argument 'foo'
$ ENV_SUBOPT=foo ./environ

- Found an option/environment variable 'a suboption' with an argument 'foo'
# AN_ENV_VAR will always take precedence over ALIAS. Also note that

# the callback is only called once, even though both aliases are

# specified.

$ AN_ENV_VAR=foo ALIAS=bar ./environ

- Found an option/environment variable 'an option' with an argument 'foo'

$ ALIAS=bar AN_ENV_VAR=foo ./environ

- Found an option/environment variable 'an option' with an argument 'foo'

$ ./environ --help

- Usage: ./environ [OPTION]...

-| Parse options and environment variables.

_{

B -a, —-—an-option[=STRING] an option with an equivalent environment variable

- -b, --—another-option[=STRING] an option without an equivalent environment variable

B -h, --help[=plain|man] print this help in plain text format if 'plain', or as a man(1)
B page if 'man'; if the argument is omitted, it will default to
B 'plain'.

#

- Suboptions for ANOTHER_ENV_VAR:

B subopt [=STRING] a suboption with an equivalent environment variable

_{

- ENVIRONMENT

%

- AN_ENV_VAR, ALIAS[=STRING] an option with an equivalent environment variable

— ANOTHER_ENV_VAR=SUBOPTS an environment variable (which takes suboptions) without an

- equivalent option

= ENV_SUBOPT [=STRING] a suboption with an equivalent environment variable

2.9 Option Parsing Flags

There are several flags which affect option parsing in different ways. These flags are passed
in the flags parameter to mu_opt_context_new (see Chapter 2 [Parsing Options and Envi-
ronment|, page 3).

MU_OPT_PERMUTE [Constant)|
This flag indicates that mu_parse_opts should rearrange argv so that the options are
at the beginning, and positional arguments are at the end.® If this flag is not given,
option parsing will stop as soon as the first non-option argument is encountered.
Option parsing will also stop when the string ‘--’ is encountered, whether or not this
flag was given. The ‘--’ string will be treated as an option, i.e., it will be counted in
the return value of mu_parse_opts and, if this flag is set, it will be moved before all
the other positional arguments in argv.

If the environment variable POSIXLY_CORRECT is set, or the MU_OPT_STOP_AT_ARG
flag is used, mu_parse_opts will act as though this flag were not given even if it was.
Note that POSIXLY_CORRECT is searched for in the env parameter given to mu_opt_
context_new_with_env, or in the program environment if no env parameter is given

5 Positional arguments are not rearranged internally, however. l.e., the positional arguments are guaran-
teed to be in the same order as they originally appeared in, even if argv was rearranged.



Chapter 2: Parsing Options and Environment 32

or if mu_opt_context_new was used to create the option parsing context. If you want
to ignore POSIXLY_CORRECT entirely, use the MU_OPT_IGNORE_POSIX flag.

MU_OPT_BUNDLE [Constant]
This flag enables bundling of short options. Without this flag, long options may be
specified with a single ‘=" or ‘==’. When this flag is set, long options may only be

specified with ‘=-’.

So when this flag is set, —abc will be treated as three short options, a, b, and c
(assuming that a and b don’t take arguments®), whereas without this flag, —abc will
be treated as a single long option, abc.

Note that when this flag is not set, short options with optional arguments take prece-
dence over long options. So, if there is a short option, o, which takes an optional
argument, and another long option, option (it doesn’t matter whether it takes an
argument or not), then the string -option is a short option, o with an argument
‘ption’.

While this may seem counter-intuitive at first, the reason for this seemingly strange
behavior becomes apparent when you consider a short option, o, which takes an
optional argument and a long option, option. (Again, it doesn’t matter whether
the long option takes an argument or not.) Suppose that instead, long options took
precedence over short ones.” Now lets look at the —option example again. It would
be parsed as a single long option, option. But what if you wanted to pass the o
short option an argument ‘ption’? Or indeed, even just ‘p’? It would be parsed as a
long option, option. So there is no possible way to pass an argument to the o short
option such that ‘ption’ begins with that argument (or is the argument). But, you
ask, couldn’t you write —o ption? You could, if the o short option takes a required
argument, but not if it takes an optional argument, because optional arguments to
short options are required to be specified as part of the option itself (see Section 2.4
[Option Arguments|, page 14). Note that you can still write the option long option
as ——option, which is unambiguous, so there is no issue.

Since this behavior can be confusing and counter-intuitive, long options take prece-
dence when the short option that would match takes a required argument, and the
long option matches exactly. Going back to the above example, if the o short option
instead took a required argument, ‘-option’ would be the long option option, rather
than the short option o, with an argument ‘ption’. Note, however, that ‘-~opt’ would
be the o short option with an argument ‘pt’. Also note that if the option long option
did not exist, ‘—option’ would be the short option o with an argument ‘ption’. If
you want to avoid ambiguity, you should always pass required arguments to short
[4

options in the next argument, and precede long options with two dashes like so: ‘-o
arg --option’.

6 See Section 2.4 [Option Arguments], page 14, for an explanation of why options a and b cannot take
arguments.

7 And indeed, this is the way GNU’s getopt_long_only function works. See Section “Getopt Long Op-
tions” in libc, near the bottom.



Chapter 2: Parsing Options and Environment 33

MU_OPT_CONTINUE [Constant|
This flag should be used if you are going to call mu_parse_opts more than once. See
Section 2.10 [Ordered Option Parsing], page 33, for more information on how to use
this flag correctly.

If the POSIXLY_CORRECT environment variable is set, or the MU_OPT_STOP_AT_ARG flag
is passed, all arguments after the first non-option arguments will be treated as non-
option arguments as well. Note that POSIXLY_CORRECT is searched for in the env
parameter given to mu_opt_context_new_with_env, or in the program environment
if no env parameter is given or if mu_opt_context_new was used to create the option
parsing context. If you want to ignore POSIXLY_CORRECT entirely, use the MU_OPT_
IGNORE_POSIX flag.

MU_OPT_ALLOW_INVALID [Constant)]
This flag makes mu_parse_opts treat invalid options as positional arguments. It can
be useful if you are writing a function which parses some options, but then leaves the
rest for the caller to parse. An example of a function which does this (although it does

not use Mu) is gtk_init (see section Main loop and Events in GTK+ 3 Reference
Manual).

Note: if you use mu_opt_context_add_help_options, the help option will only print
the help for the context you called mu_opt_context_add_help_options with. mu_
opt_context_add_help_options has no way of knowing what options will be parsed
in the future. So if you are writing a function like that described above, you may
wish instead to make your function take an option context as a parameter, and then
add some standard ones using mu_opt_context_add_options (see Chapter 2 [Parsing
Options and Environment], page 3).

MU_OPT_IGNORE_POSIX [Constant)
Ignore the POSIXLY_CORRECT environment variable even if it is set. This flag can be
used for programs for which it would not make sense to parse options in a POSIXly
correct way. For example, you might have an option which acts on the last positional
argument given before it.

MU_OPT_STOP_AT_ARG [Constant|
Stop parsing options after the first positional argument. l.e., act as though the
POSIXLY_CORRECT environment variable were set. If this flag is used, MU_OPT_IGNORE_
POSIX has no effect.

Note that this behavior is the default, unless the MU_OPT_PERMUTE flag is used, the
MU_OPT_CONTINUE flag is used, and/or an argument callback is used (see Section 2.10
[Ordered Option Parsing], page 33).

2.10 Ordered Option Parsing

Sometimes it is useful to know where options appear on the command line. You can tell
in which order options (and suboptions) appear by taking advantage of the fact that call-
backs (see Section 2.5 [Option Callbacks|, page 18) are called in the same order that the
corresponding options appear on the command line. However, if you want to determine
the ordering of non-option positional arguments as well as options, you must instead use



Chapter 2: Parsing Options and Environment 34

an argument callback, or use the MU_OPT_CONTINUE flag (see Section 2.9 [Option Parsing
Flags], page 31).

To use an argument callback, you must use the mu_opt_context_set_arg_callback
function.

void mu_opt_context_set_arg_callback (MU_OPT_CONTEXT [Function]
xcontext, int callback (const char *arg, void *data, char
xerr), void *data, int destructor (void *data))
This function sets an argument callback in context. context must not have been cre-
ated with the MU_OPT_CONTINUE flag (see Section 2.9 [Option Parsing Flags], page 31),
and it must never have been passed to mu_parse_opts (see Chapter 2 [Parsing Op-
tions and Environment], page 3).

callback will be called for each positional argument found when mu_parse_opts is
called. callback may not be NULL. data will be passed to callback as the data
argument. When context is destroyed using mu_opt_context_free, destructor will
be called with data passed as its data argument.

callback should indicate success by returning zero. If callback fails, it should re-
turn nonzero and copy an error string to err (not exceeding MU_OPT_ERR_MAX). See
[callback error indication|, page 20, for more information.

Note that if either of the flags MU_OPT_PERMUTE or MU_OPT_STOP_AT_ARG are used when
the option parsing context is created (see Section 2.9 [Option Parsing Flags|, page 31), then
the successful return value of mu_parse_opts will not include the positional arguments
parsed (see Chapter 2 [Parsing Options and Environment], page 3). This is so that, after
shifting the arguments by the return value of mu_parse_opts with mu_shift_args, the
remaining arguments will be the positional arguments.

Normally, however, when using an argument callback, you shouldn’t need the return
value of mu_parse_opts except to check for errors.

If neither of the flags MU_OPT_PERMUTE nor MU_OPT_STOP_AT_ARG are given, then the
return value of mu_parse_opts will include the positional arguments (i.e., a successful
return from mu_parse_opts will always return the total number of arguments, options or
otherwise). This is because, if neither MU_OPT_PERMUTE nor MU_OPT_STOP_AT_ARG are given,
it cannot be guaranteed that all positional arguments will appear after all options. Thus,
the return value of mu_parse_opts should not be used to shift the arguments, and should
only be used to check for errors.

Here is an example of how to use argument callbacks:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x{new,free} */

/* Callbacks to print a message when we find an option or argument. */

static int print_example(void *data, char *err) {
puts("Option found: example");
return O;

}

static int print_another(void *data, char *err) {
puts("Option found: another");



Chapter 2: Parsing Options and Environment 35

return O;

}

static int print_argument(const char *arg, void *data, char *err) {
printf ("Argument found: %s\n", arg);
return O;

}

int main(int argc, char **argv) {
const MU_OPT options[] = {

{
.short_opt = "e",
.long_opt = "example",
.has_arg = MU_OPT_NONE,
.callback_none = print_example
},
{
.short_opt = "a",
.long_opt = "another",
.has_arg = MU_OPT_NONE,
.callback_none = print_another
}7
{012}
};
MU_OPT_CONTEXT *context;
int ret;

context = mu_opt_context_xnew(argc, argv, options, 0);
mu_opt_context_set_arg_callback(context, print_argument,
NULL, NULL);
ret = mu_parse_opts(context);
mu_opt_context_xfree(context);
return MU_OPT_ERR(ret);
}

Here is the output of the example program:

./option-ordered-callback foo -e bar --another baz
Argument found: foo

Option found: example

Argument found: bar

Option found: another

Argument found: baz

./option-ordered-callback -a foo bar --example
Option found: another

Argument found: foo

Argument found: bar

Option found: example

111 1% 11 1.1*

Alternatively, you can also determine the order in which options and positional argu-
ments appear using the MU_OPT_CONTINUE flag. If you use this flag, you should not use
the MU_OPT_PERMUTE flag (otherwise, all options will be parsed at once and the MU_OPT_
CONTINUE flag is rendered useless). The MU_OPT_STOP_AT_ARG is also useless if you use
MU_OPT_CONTINUE, because if you use MU_OPT_STOP_AT_ARG, you might as well just parse
the options once and then parse the rest of the arguments, which will only be positional
arguments.

Using the MU_OPT_CONTINUE flag, you should parse options (maybe using callbacks if you
care about the order of the options themselves), then parse positional arguments, and then



Chapter 2: Parsing Options and Environment 36

options again until all arguments are used up. Note, however, that normally you must not
call mu_parse_opts more than once, unless you pass the MU_OPT_CONTINUE flag

All the environment variables will be parsed on the first call of mu_parse_opts. They
will not be parsed again in subsequent calls. See Section 2.8 [Parsing the Environment],
page 28, for more information.

After you parse each non-option argument, you must call mu_opt_context_shift on
the option context in order to ensure that mu_parse_opts will not stop at the argument
you just parsed.

int mu_opt_context_shift (MU_OPT_CONTEXT *context, int [Function]
amount)
Update the internal index of context by amount. amount may be negative.

Normally, this function returns zero. However, in the case that the new index would
be less that 1, the new index will instead be set to 1 and the amount that could not
be shifted will be returned. And in the case that the new index would be greater
than or equal to the number of arguments in context, the new index will instead be
set to the number of arguments minus one, and again, the amount that could not be
shifted is returned.

Here is an example illustrating how to parse options and positional arguments while
preserving the order, without using argument callbacks:

#include <stdio.h>
#include <mu/options.h>
#include <mu/safe.h> /* For mu_opt_context_x{new,free} */

/* Callbacks to print a message when we find an option. */

static int print_example(void *data, char *err) {
puts("Option found: example");
return O;

}

static int print_another(void *data, char *err) {
puts("Option found: another");
return O;

}

int main(int argc, char **argv) {
const MU_OPT options[] = {

{
.short_opt = "e",
.long_opt = "example",
.has_arg = MU_OPT_NONE,
.callback_none = print_example

1,

{
.short_opt = "a",
.long_opt = "another",
.has_arg = MU_OPT_NONE,
.callback_none = print_another

}7

{0}



Chapter 2: Parsing Options and Environment

MU_OPT_CONTEXT *context;

context = mu_opt_context_xnew(argc, argv, options, MU_OPT_CONTINUE);
while (argc > 1) {

}

int ret;

/* Parse options. */
ret = mu_parse_opts(context);
if (MU_OPT_ERR(ret))

return 1;

/* Shift the arguments (to get rid of the options we just
parsed). */
mu_shift_args(&argc, &argv, ret);

if (arge > 1) {

/* Print an argument (we don't have to print them all at once
because if “mu_parse_opts' doesn't find any options, it will
just return 0). */

printf ("Argument found: %s\n", argv[i]);

/* Shift away this argument. */

mu_shift_args(&argc, &argv, 1);

mu_opt_context_shift(context, 1);

}

mu_opt_context_xfree(context);

return O;

}

37

The behavior of the above program is identical to the one using argument callbacks (see
[argument callback example|, page 34).

2.11 Formatting Help

Many programs have a -h or ——help option which prints out a short message describing
how to use the program. Mu supports automatically generating a usage message through
the use of the help and arg_help fields of the MU_OPT structure (see Section 2.1 [Option
Structure], page 5).

void mu_opt_context_add_help (MU_OPT_CONTEXT *context,
const char *usage, const char *short_description, const char

*description, const char *notes, const char *section, const
char *section_name, const char *source, const char *date)

Add usage information to context. The arguments are as follows:

usage

gram takes. For example, ‘[OPTION]... [FILE]...'.

[Function]

This is a short, human-readable description of the arguments your pro-
If usage is left

NULL, it will default to ‘[OPTION]...’ if there is a least one option in
options or, if options is empty, it will default to *’ (the empty string). If
you really want nothing to be printed for usage, pass *’ (the empty string)

explicitly.

Alternative usages (including no arguments) can be specified, separated
by newlines. For example, if your program is called prog and you pass



Chapter 2: Parsing Options and Environment 38

a usage of ‘FO0\nBAR\n\nBAZ’ (note the two ‘\n’s after ‘BAR’), the help
output will be as follows:
Usage: prog FO0O0
or: prog BAR
or: prog
or: prog BAZ
[...]
You can think of it as piping usage to
sed '1s/"/Usage: prog /; 2,/°/ or: prog /'

(assuming your program is called prog).

short_description

description

notes

section

This is a very short description (shorter than description) of the program.
It is used as the description in the NAME section.

If this parameter is passed as NULL, a default will be substituted. This
parameter is only used for man page output.

This is a short, human-readable description of whatever your program
does. It is printed right below the usage line. It should be one or two
sentences long. For example:

Frobnicate frobs. Nonexistent frobs will be treated as empty.

You may reference metasyntactic variables specified in usage here (e.g.,
‘FILE’) if you like. If you set this to NULL, no description will be printed.

Note: you should not write

Mandatory arguments to long options are mandatory for
short options too.

in description. This will automatically be added to the help text if it
makes sense (i.e., if there exist long options with required arguments that
have short option equivalents).

This will be printed at the end of the help message, after the options.
This is where you can put examples, bug report addresses, etc.

The section number of the manual page. This can be any string (but
see section_name below), although it should be a number followed by an
optional suffix. The optional suffix can be something like ncurses uses for
its man pages, ‘NCURSES’ (so the full section would be ‘3NCURSES’). Most
likely you should just set this to a number.

This parameter must not be NULL, unless man page output is not being
used. This parameter is only used for man page output.

section_name

This is the name of the manual section. For example, ‘User Commands’.

If this parameter is passed as NULL, a default will be chosen based on
section. In this case, section must start with a number between 1 and 9
inclusive except for 7. Section 7 does not have a default name because
it is more of a “miscellaneous” section, and thus you must provide the
name yourself.



Chapter 2: Parsing Options and Environment 39

This parameter is only used for man page output.

source This is the “source” of your program. If your program is part of a suite,
put the name and version of the suite here. Otherwise, put the name and
version of your program here.

If this parameter is passed as NULL (not recommended), the name your
program was invoked as will be used. This parameter is only used for
man page output.

date This is the date that the help text was last updated. Update date every
time you change the help text for any option, or you change the name of
an option or add a new one. You need not update this for trivial changes.

The format for date is conventionally ‘YYYY-MM-DD’.

If this parameter is passed as NULL (not recommended), the date at which
your program was run to generate the man page will be used instead. Note
that the date parameter is passed as NULL in the examples for simplicity,
but this is still not recommended.

This parameter is only used for man page output.

int mu_opt_context_add_help_options (MU_OPT_CONTEXT [Function]
xcontext, int flags)
Add help options to context based on flags. If MU_HELP_PREPEND is present in flags,
the help options will be prepended to the current options, i.e., inserted before them.
Othewise, if MU_HELP_PREPEND is not present in flags, the help options will be ap-
pended to the current options, i.e., inserted after them.

flags tells mu_opt_context_add_help_options what kind of help op-
tions/environment variables should be created, in addition to whether it should
append or prepend the help options. The following values may be passed in flags,
and can be combined with | (bitwise OR).

MU_HELP_PREPEND
This indicates that mu_opt_context_add_help_options should add the
help options before the current options, rather than after. Note that
order of the help options themselves is unchanged.

MU_HELP_SHORT

MU_HELP_LONG

MU_HELP_QUESTION_MARK
These flags tell mu_opt_context_add_help_options to create an option
which takes a single optional argument, format. MU_HELP_SHORT will cre-
ate a short option, -h, while MU_HELP_LONG will create a long option,
—--help, and MU_HELP_QUESTION_MARK will create a short option, -?. for-
mat specifies the output format to use when outputting help. It can either
be ‘man’ to output in a format which can be parsed by the man program,
or it can be ‘plain’ or ‘text’ to output in a human-readable, plain-text
format.

If format is omitted, it will default to the value of the MU_HELP_FORMAT
environment variable if MU_HELP_ENV is passed in flags. Otherwise, if the



Chapter 2: Parsing Options and Environment 40

MU_HELP_FORMAT environment variable is not set or does not have a value
or MU_HELP_ENV was not passed in flags, format will default to ‘plain’.

Note: MU_HELP_QUESTION_MARK is not included in MU_HELP_ALL (see be-
low). If you want to pass all flags including MU_HELP_QUESTION_MARK, you
must pass it explicitly, like so: MU_HELP_ALL | MU_HELP_QUESTION_MARK.

MU_HELP_MAN_SHORT

MU_HELP_MAN_LONG
These flags tell mu_opt_context_add_help_options to create an option
which takes no argument, and always outputs help in man format. MU_
HELP_MAN_SHORT will create a short option, -m, while MU_HELP_MAN_LONG
will create a long option, —-man.

MU_HELP_ENV
This flag tells mu_opt_context_add_help_options to create an environ-
ment variable, MU_HELP_FORMAT, which will specify an output format to
use if none was specified to -h or ——help. You must only use this flag if
MU_HELP_SHORT or MU_HELP_LONG was also passed in flags.

MU_HELP_BOTH
Equivalent to MU_HELP_SHORT | MU_HELP_LONG.

MU_HELP_MAN_BOTH
Equivalent to MU_HELP_MAN_SHORT | MU_HELP_MAN_LONG.

MU_HELP_ALL
Equivalent to passing all flags except for MU_HELP_QUESTION_MARK, i.e.,
MU_HELP_BOTH | MU_HELP_MAN_BOTH | MU_HELP_ENV.

Output formatted for the man program will be piped to man if standard output is
a terminal (as determined by isatty), otherwise the raw roff code will be output
to standard output. If standard output is a terminal but an error occurred while
executing the man program, a warning message will be printed and the raw roff code
will be output to standard output as if standard output was not a terminal.

Note: some systems may not provide the necessary functionality to run the man
command. In that case, roff code will always be output, regardless of whether
standard output is a terminal.

int mu_format_help (FILE *stream, const MU_OPT_CONTEXT [Function]
xcontext)

int mu_format_help_man (FILE *stream, const MU_OPT_CONTEXT [Function]
*xcontext)

These functions format a help message, printing it to stream. If you’d like to automat-
ically create a help option that does this, see mu_opt_context_add_help_options
above. You might also want to call these functions manually, for example, if your
program receives no arguments or if mu_parse_opts returns an error code (see Chap-
ter 2 [Parsing Options and Environment|, page 3, and Section 2.12 [Option Parsing
Errors|, page 44).

mu_format_help will output a human-readable, plain text message, while mu_format_
help_man will output roff code.



Chapter 2: Parsing Options and Environment 41

The strings passed to mu_opt_context_add_help are used in the help message, as
well as the options in context.

char * mu_format_help_string (const MU_OPT_CONTEXT [Function]
xcontext, unsigned short goal, unsigned short width)

char * mu_format_help_man_string (const MU_OPT_CONTEXT [Function]
*xcontext)

These functions are like mu_format_help and mu_format_help_man respectively (see
above), except that they return the output as a string rather than printing it. If an
error occurs, NULL will be returned and errno will be set to indicate the error. If the
returned string is not NULL, it will by dynamically allocated and must be freed when
you are done with it (see Section “Freeing after Malloc” in 1libc).

Unlike mu_format_help, mu_format_help_string is unable to determine the goal
and width to use, so you must specify these parameters yourself. See Chapter 3
[Formatting Text], page 45, for the meanings of goal and width.

You should provide help text for individual options in the help and arg_help fields of
the MU_OPT structure (see Section 2.1 [Option Structure], page 5).

arg_help is similar to the usage parameter to mu_format_help. It should be a simple
string describing the kind of arguments the option takes. For example, you might write
‘FILE’ if your option takes a file argument, or ‘WxH’ if it takes a width and height argument,
separated by an ‘x’. If this is left as NULL, a default will be chosen based on the type of
argument your option takes, specified in the arg_type field of the MU_OPT structure.

Note: you should not use ‘[’ and ‘]’ in the arg_help string. The arg_help string will
automatically be enclosed in ‘[’ and ‘]’ if the option takes an optional argument.

help is a short description of what the option does. Most GNU utilities use a single
sentence, begun with a lowercase letter® and ended without a period. However, you can
format help however you like, but keep in mind that it should be fairly short. One sentence
or, if you really must, two.

If the help field is left as NULL, the corresponding option will remain undocumented as
if it did not exist. See Section 2.1 [Option Structure], page 5, for more information.

Below is an example illustrating the usage of both mu_opt_context_add_help_options
and mu_format_help. Note that the category field is used to denote option categories (see
Section 2.1 [Option Structure], page 5).

#include <stdio.h>
#include <stdlib.h>
#include <mu/options.h>

#include <mu/compat.h> /* For __attribute__() */
#include <mu/safe.h> /* For mu_opt_context_x* */

__attribute__((noreturn))

int print_version(void *data, char *err) {
puts("Version 1.0");
exit (0);

}

int main(int argc, char *xargv) {

8 Unless it should be uppercase for another reason, for example a proper noun or acronym.



Chapter 2: Parsing Options and Environment

int ret;
const MU_OPT opts_start[] = {
{
.short_opt = "n",
.long_opt = "none",
.has_arg = MU_OPT_NONE,
.help = "an option which takes no argument"
}!
{ .category = "Options taking arguments" },
{
.short_opt = "o",
.long_opt = "optiomnal",
.has_arg = MU_OPT_OPTIONAL,
.arg_type = MU_OPT_STRING,
.arg_help = "OPTARG",
.help = "an option which optionally takes an argument"
}7
{
.short_opt = "r",
.long_opt = "required",
.has_arg = MU_OPT_REQUIRED,
.arg_type = MU_OPT_STRING,
.arg_help = "REQARG",
.help = "an option which requires an argument"
}!
{ .category = "Help options and environment variables" },
{0}
};

/* Options to add after the help options. */
const MU_OPT opts_end[] = {

{ .category = "Version information" },
{
.short_opt = "v",
.long_opt = "versiomn",
.has_arg = MU_OPT_NONE,
.callback_none = print_version,
.help = "print version information and exit"
},
{01}
};

MU_OPT_CONTEXT *context;

context = mu_opt_context_xnew(argc, argv, opts_start,
MU_OPT_BUNDLE | MU_OPT_PERMUTE) ;

/* Add the help data. */

mu_opt_context_add_help(context, "[OPTION]...", "do stuff",

"Do stuff. If this text is really long, it "
"will be wrapped. Some more text to make "
"this text long enough to be wrapped.",
"Report bugs to <libmu-bug@nongnu.org>.",
"i", NULL, "Mu Examples", NULL);

/* Create the help option. MU_HELP_ALL is equivalent to
MU_HELP_SHORT | MU_HELP_LONG | MU_HELP_MAN_SHORT |
MU_HELP_MAN_LONG | MU_HELP_ENV, so it will create the options
'-h', '--help', '-m', and '--man', and it will create the
environment variable 'MU_HELP_FORMAT'. */

mu_opt_context_xadd_help_options(context, MU_HELP_ALL);

42



Chapter 2: Parsing Options and Environment 43

/* Add the other options. */
mu_opt_Context_xadd_options(context, opts_end, MU_OPT_APPEND) ;

/* Parse the options. */
ret = mu_parse_opts(context);

/* If there was an option parsing error, print a usage message so
the user knows how to use us properly. */

if (ret == MU_OPT_ERR_PARSE)
mu_format_help(stderr, context);

mu_opt_context_xfree(context);

return !!MU_OPT_ERR(ret);
}

This is what the output looks like (note, the COLUMNS environment variable is set to 65
so that the output will look good in this manual):
$ COLUMNS=65

$ export COLUMNS
$ ./option-help --help

| Usage: ./option-help [OPTION]...

- Do stuff. If this text is really long, it will be wrapped. Some more text to make this text long
-1 enough to be wrapped.

%

-| Mandatory arguments to long options are mandatory for short options too.

— -n, —-none an option which takes no argument

_{

-1 Options taking arguments:

B -0, ——optional [=0PTARG] an option which optionally takes an argument

n -r, --required=REQARG an option which requires an argument

%

-| Help options and environment variables:

B -h, --help[=plain|man] print this help in plain text format if 'plain', or as a man(l) page
— if 'man'; if the argument is omitted, it will default to the value
— of the MU_HELP_FORMAT environment variable if set, otherwise

B 'plain’.

- -m, --man print this help as a man(l) page

%

-1 Version information:

n -v, —-version print version information and exit

_{

- ENVIRONMENT

#

-| Help options and environment variables:

— MU_HELP_FORMAT [=plain|man] the default format for -h, --help

_{

- Report bugs to <libmu-bug@nongnu.org>.

$ ./option-help --foo

error ./option-help: '--foo': invalid option

error| Usage: ./option-help [OPTION]...

error| Do stuff. If this text is really long, it will be wrapped. Some more text to make this text long
error| enough to be wrapped.

error

error| Mandatory arguments to long options are mandatory for short options too.
error -n, —-none an option which takes no argument

error

error| Options taking arguments:




Chapter 2: Parsing Options and Environment 44

error -0, ——optional [=0PTARG] an option which optionally takes an argument

error -r, —--required=REQARG an option which requires an argument

error

error| Help options and environment variables:

error -h, --help[=plain|man] print this help in plain text format if 'plain', or as a man(l) paj
error if 'man'; if the argument is omitted, it will default to the valr
error of the MU_HELP_FORMAT environment variable if set, otherwise
error 'plain'.

error -m, --man print this help as a man(l) page

error
error| Version information:

error -v, —-version print version information and exit
error

error| ENVIRONMENT

error

error| Help options and environment variables:

error MU_HELP_FORMAT [=plain|man] the default format for -h, --help
error

error| Report bugs to <libmu-bug@nongnu.org>.

2.12 Option Parsing Errors

mu_parse_opts and mu_parse_subopts can fail for several reasons. On failure, these func-
tions will return an error code depending on the reason for failure. The error code can be
one of the following:

MU_OPT_ERR_PARSE [Constant)|
An option parsing error. This indicates that the user made an error when specifying
options on the command line. You may wish to print a help message when mu_
parse_opts returns this value (see Section 2.11 [Formatting Help], page 37, for an
example).

MU_OPT_ERR_IO [Constant|
This indicates that an input/output error occurred while parsing the arguments.
This could indicate, for example, failure to open a file specified as an argument to an
option which has a arg_type field of MU_OPT_FILE (see Section 2.1 [Option Structure],

page b).
MU_OPT_ERR_CALLBACK [Constant]
This value is returned from mu_parse_opts when a callback returns a nonzero value

(see Section 2.5 [Option Callbacks|, page 18). You can have your callback set an error
flag if you want more details.

int MU_OPT_ERR (int retval) [Macro]
This macro returns true if retval is one of the above error codes.



45

3 Formatting Text

Mu provides several functions for formatting text. The symbols described below are declared
in mu/format.h.

unsigned short mu_format_tab_stop [Variable]
The formatting functions always convert TAB characters (‘\t’) to spaces. This global
variable specifies the tab stop to be used by the formatting functions. You may set
it directly. The default value is MU_FORMAT_TAB_STOP (see below).

MU_FORMAT_TAB_STOP [Constant|
The default value for mu_format_tab_stop (see above). Equal to 8.

int mu_format (FILE *stream, unsigned short *cursor, [Function]
unsigned short goal, unsigned short width, unsigned short
indent, unsigned short subindent, const char *format, ...)
First, this function creates an internal string based on the printf-style format string,
format, and a variable number of extra arguments which are processed according to
‘%’-directives in format. See Section “Formatted Output” in libc for more informa-
tion on how format and the variable arguments are processed.

After this internal string is created, it is then printed to stream, with formatting being
done according to the various parameters. For a description of what these parameters
do, see Section 3.1 [Controlling Formatted Output], page 46.

This function returns O on success, or nonzero on error, in which case errno will be
set to indicate the error (see Section “Error Reporting” in libc).

char * mu_format_string (unsigned short *cursor, unsigned [Function]
short goal, unsigned short width, unsigned short indent,
unsigned short subindent, const char *format, ...)

This function is just like mu_format (see above), except that it returns the result in
a dynamically allocated string rather than printing it to a stream.

The return value is the allocated string on success, or NULL on error, in which case
errno will be set to indicate the error (see Section “Error Reporting” in libc). If
this function succeeds, the returned string must be freed when you are done with it
(see Section “Freeing after Malloc” in libc).

int mu_vformat (FILE *stream, unsigned short *cursor, [Function]
unsigned short goal, unsigned short width, unsigned short
indent, unsigned short subindent, const char *format,
va_list ap)
This function is nearly identical to mu_format, except that it takes a va_list argu-
ment, ap, rather than a variable list of arguments. This is useful if you want to write
a variadic function which calls mu_vformat on its arguments (see Section “Variadic
Functions” in libc).



Chapter 3: Formatting Text 46

char * mu_vformat_string (unsigned short *cursor, unsigned [Function]

short goal, unsigned short width, unsigned short indent,
unsigned short subindent, const char *format, va_list ap)

This function is nearly identical to mu_format_string, except that it takes a va_list
argument, ap, rather than a variable list of arguments. See mu_vformat above for
why this may be useful.

3.1 Controlling Formatted Output

Although the various formatting functions (see Chapter 3 [Formatting Text|, page 45) differ
slightly in usage, they each take a common set of arguments to control the formatted output.
The meaning of each of these arguments is described in the table below:

goal

width

cursor

indent

subindent

This parameter is the goal width. Lines will be wrapped at this width as long
as that does not cause words to be split into more than one line, but will be
continued beyond this width if wrapping would split words into more than one
line.

A goal of 0 is treated as infinite.

This is the absolute maximum length lines are allowed to be. If a line is any
longer than this, it will be wrapped even if that means splitting in the middle
of a word. If the line ¢s split in the middle of a word, a ‘=’ will be appended to
the end of the line (if there is room') to indicate that the word is continued on
the next line.

A width of 0 is treated as infinite.

This is the address of an unsigned short which holds the current column of
output text. You should initialize the value whose address is cursor to 0 before
calling any of the formatting functions for the first time with that cursor argu-
ment. See Section 3.2 [Formatting Example], page 47, for an example of how
this is used.

Note: cursor may not be NULL.

This specifies the column that the first line of text should be indented to. If
xcursor is already greater than indent, then no indentation will be performed
(i.e., it will be as though indent were 0).

Lines following the first one are indented according to subindent.

This is the indentation to use for lines after the first one (see above). Note that
this only applies to a single call of a formatting function. For example, if you
do this:

unsigned short cursor = 0;

mu_format (stdout, 0, 0, &cursor, 10, 5, "foo\n");

mu_format (stdout, 0, 0, &cursor, 10, 5, "bar\n");
both ‘foo’ and ‘bar’ will be indented 10 characters. If you want ‘bar’ to
be indented 5 characters, say that explicitly by passing indent as 5 (i.e., mu_
format (stdout, 0, 0, &cursor, 5, 5, "bar\n")).

! There might not be room for a ‘=’ if width - indent < 2.



Chapter 3: Formatting Text

3.2 Formatting Example

Here is an example illustrating the use of mu_format and mu_format_string:

#include <stdio.h>
#include <stdlib.h>
#include <mu/format.h>

int main(void) {
char *str;
unsigned short cursor = 0;

/* Format a message to standard output. */

puts("===== mu_format =====");

mu_format (stdout, &cursor, 40, 50, 4, 2, "\
This is some text. The first line will be indented 4 \
characters, while following lines will be indented 2. Lines \
will be wrapped at 40 characters, except \
reaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaally \
long words, which will be wrapped at 50 characters. A line \
break will appear here:\nno matter what.\n");

/* Write a similarly formatted message to a string. */
str = mu_format_string(&cursor, 40, 50, 4, 2,
"This text is similarly formatted "
"to the text above.\n");

/* Print the string to standard output. */
puts("===== mu_format_string =====");
fputs(str, stdout);

/* We must free the string since ‘mu_format_string' dynamically
allocates it. */
free(str);

return O;

}

And here is the output:

$ ./format
===== mu_format =====
This is some text. The first line
will be indented 4 characters, while
following lines will be indented 2.
Lines will be wrapped at 40
characters, except
reaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa-
aaaaaaaaaally long words, which will
be wrapped at 50 characters. A line
break will appear here:
no matter what.
===== mu_format_string =====
This text is similarly formatted to
the text above.

e N N e I



48

4 Safety Functions

Some functions, like malloc, rarely fail, and it is often impossible to recover when these
functions do fail. When using these functions, it may be tempting to simply ignore errors.
However, if you do that, it can cause errors to occur elsewhere, making the source of the
error hard to find.

For example, if you call malloc and it returns NULL, then if you later try to deference
that pointer, it will cause a segmentation fault. A common solution is to write a function,
traditionally called xmalloc, which calls malloc and terminates the program on failure.

However, it can be a pain to write these functions over and over again, which is why
Mu provides them. In addition, the functions provided in Mu report the exact line in your
source where the error occurred, which might be able to help you find where your program
is using a lot of memory (or where it causes a different type of error to occur).

In addition, Mu provides several convenience functions for error and warning reporting.

The functions described in this chapter are declared in mu/safe.h.

void mu_die (int status, const char *format, ...) [Function]
This function prints a formatted error message, specified by format, to standard error
and exits the program. If status is negative, mu_die will exit the program by calling
abort (see Section “Aborting a Program” in libc). Otherwise, mu_die will pass
status to exit (see Section “Normal Termination” in libc). status must not be 0.

If the string to be printed, i.e., the expansion of format, ends in a newline (‘\n’),
the expanded string will be printed verbatim. Otherwise, if the expanded string does
not end in a newline, context information will be prepended to the string when it is
printed.

If an error occurred while printing the error message, mu_die will terminate by calling
abort regardless of the value of status.

int mu_warn (const char *format, ...) [Function]
This function prints a formatted message to standard error in the exact same way
as mu_die specified above, but it returns instead of calling exit or abort. If mu_
warn could successfully print a message to standard error, mu_warn will return O.
Otherwise, mu_warn will return a nonzero value.

void mu_vdie (int status, const char *format, va_list ap) [Function]

int mu_vwarn (const char *format, va_list ap) [Function]
Like mu_die and mu_warn respectively (see above), except that these functions take
a va_list argument, ap, instead of variable arguments. See Section “Variable Argu-
ments Output” in libc.

void * mu_xmalloc (size_t size) [Function]
Returns a pointer to dynamically allocated memory of size size. The returned pointer
must be passed to free. See Section “Basic Allocation” in libc.

void * mu_xcalloc (size_t count, size_t eltsize) [Function]
Returns a pointer to dynamically allocated memory of size count * eltsize. The
returned memory is guaranteed to be initialized to zero, and this function is also



Chapter 4: Safety Functions 49

guaranteed to fail safely and reliably in the event that count * eltsize overflows.
The returned pointer must be passed to free. See Section “Allocating Cleared Space”
in libc.

void * mu_xrealloc (void *ptr, size_t newsize) [Function]
Changes the size of the block whose address is ptr to be newsize. If the return value
is not equal to ptr, ptr will be freed. See Section “Changing Block Size” in 1ibc.

void * mu_xreallocarray (void *ptr, size_t count, size_t [Function]
eltsize)
Equivalent to mu_xrealloc(ptr, count * eltsize) (see above), except that this
function will fail safely and reliably in the event that count * eltsize overflows.
This function is guaranteed to be available even if your system does not define
reallocarray. See Section “Changing Block Size” in libc and Chapter 5 [Com-
patibility Functions], page 52.

char * mu_xstrdup (const char *string) [Function]
Allocates memory large enough to hold a copy of string, and copies string to the
newly allocated memory. string must be null-terminated. The returned pointer must
be passed to free. See Section “Copying Strings and Arrays” in libc.

char * mu_xstrndup (const char *string, size_t max) [Function]
Like mu_xstrdup, but only copies max bytes if there was no null byte in the first max
bytes of string. The returned string will always be terminated with a null byte. See
Section “Truncating Strings” in libc.

unsigned int mu_xasprintf (char **ptr, const char *format, [Function]
Allocates memory large enough to hold the output string, and returns the allocated
string in ptr (which must be passed to free). Returns the number of characters
in *ptr, not including the terminating null byte. This function is guaranteed to
be available even if your system does not define asprintf. See Section “Dynamic
Output” in 1ibc and Chapter 5 [Compatibility Functions], page 52.

unsigned int mu_xvasprintf (char **ptr, const char [Function]
xformat, va_list ap)
Like mu_xasprintf (see above), but takes a va_list argument, ap, instead of variable
arguments. This function is guaranteed to be available even if your system does not
define vasprintf. See Section “Variable Arguments Output” in 1ibc and Chapter 5
[Compatibility Functions|, page 52.

void mu_xformat (FILE *stream, unsigned short *cursor, [Function]
unsigned short goal, unsigned short width, unsigned short
indent, unsigned short subindent, const char *format, ...)

char * mu_xformat_string (unsigned short *cursor, unsigned [Function]

short goal, unsigned short width, unsigned short indent,
unsigned short subindent, const char *format, ...)



Chapter 4: Safety Functions 50

void mu_xvformat (FILE *stream, unsigned short *cursor, [Function]
unsigned short goal, unsigned short width, unsigned short
indent, unsigned short subindent, const char *format,
va_list ap)
char * mu_xvformat_string (unsigned short *cursor, [Function]
unsigned short goal, unsigned short width, unsigned short
indent, unsigned short subindent, const char *format,
va_list ap)
These functions are like their non-x counterparts, except that they terminate the
program on error. See Chapter 3 [Formatting Text], page 45.

MU_OPT_CONTEXT * mu_opt_context_xnew (int argc, char [Function]
xkargv, const MU_OPT *options, int flags)

MU_OPT_CONTEXT * mu_opt_context_xnew_with_env (int argc, [Function]
char **xargv, char **environment const MU_OPT *options, int
flags)

Create a new option parsing context. See Chapter 2 [Parsing Options and Environ-
ment|, page 3.

MU_SUBOPT_CONTEXT * mu_subopt_context_xnew (const char [Function]
xprog_name, const char *suboptstr, const MU_OPT *subopts)
Create a new suboption parsing context. See Section 2.7 [Parsing Suboptions],

page 25.
void mu_opt_context_xfree (MU_OPT_CONTEXT *context) [Function]
Free an option parsing context. See Chapter 2 [Parsing Options and Environment],
page 3.
void mu_subopt_context_xfree (const MU_SUBOPT_CONTEXT [Function]
*xcontext)

Free a suboption parsing context. See Section 2.7 [Parsing Suboptions], page 25.

void mu_opt_context_xset_no_prefixes (MU_OPT_CONTEXT [Function]
xcontext, ...)
void mu_opt_context_xset_no_prefix_array (MU_OPT_CONTEXT [Function]

xcontext, char **no_prefixes)
void mu_subopt_context_xset_no_prefixes (MU_SUBOPT_CONTEXT [Function]
xcontext, ...)
void mu_subopt_context_xset_no_prefix_array [Function]
(MU_SUBOPT_CONTEXT *context, char **no_prefixes)
Set alternative negation prefixes for option and suboption parsing contexts. See Sec-
tion 2.3.1 [Negation Prefixes|, page 13.

void mu_opt_context_xadd_options (MU_OPT_CONTEXT *context, [Function]
const MU_OPT *options, enum MU_OPT_WHERE where)
Add options to context, either at the beginning or end based on where. See Chapter 2
[Parsing Options and Environment|, page 3.



Chapter 4: Safety Functions 51

void mu_opt_context_xadd_help_options (MU_OPT_CONTEXT [Function]
xcontext, int flags)
Add help options to context based on flags. See Section 2.11 [Formatting Help],

page 37.
void mu_xformat_help (FILE *stream, const MU_OPT_CONTEXT [Function]
*xcontext)
void mu_xformat_help_man (FILE *stream, const [Function]

MU_OPT_CONTEXT *context)
Format a help message from context, printing it to stream. See Section 2.11 [Format-
ting Help|, page 37.

char * mu_xformat_help_string (const MU_OPT_CONTEXT [Function]
xcontext, unsigned short goal, unsigned short width)

char * mu_xformat_help_man_string (const MU_OPT_CONTEXT [Function]
*xcontext)

Format a help message from context, returning it as a dynamically allocated string.
See Section 2.11 [Formatting Help], page 37.



52

5 Compatibility Functions

Some systems provide useful functions, but you cannot use these without worrying about
your program not being portable to other systems. That is why Mu provides the func-
tions described below. On systems where these functions are provided, Mu will use the
provided functions. This is because, in many cases, the functions are hard optimized, and
the alternatives provided by Mu will not be as efficient.

The functions described in this chapter are declared in mu/compat.h.

)

The functions described in this chapter are the only symbols not beginning with ‘mu_
(or ‘MU_’ for macros). The reason for this is so that you can simply include mu/compat.h in
source files where you use these functions, and it automatically becomes portable (as long
as it doesn’t have any other portability issues).

You don’t have to worry about defining any feature test macros, such as _GNU_SOURCE,
although it doesn’t hurt to do so. Just make sure you include mu/compat .h after any system
headers.

All of the functions below set the global variable errno on failure. See Section “Error
Reporting” in libc.

int asprintf (char **ptr, const char *format, ...) [Function]
This function returns a formatted string in *ptr based on the printf-style format
string format. *ptr is dynamically allocated and must be passed to free. The return
value is the number of characters in *ptr on success, or -1 on error. See Section
“Dynamic Output” in 1libc.

int vasprintf (char **ptr, const char *format, va_list ap) [Function]
Like asprintf (see above), but takes a va_list argument, ap, instead of variable
arguments. See Section “Variable Arguments Output” in libc.

char * strchrnul (const char *string, int c) [Function]
Returns a pointer to the first occurrence of ¢ (converted to a char) in string, or a
pointer to the terminating null byte if ¢ does not occur in string. See Section “Search
Functions” in 1ibc

void * reallocarray (void *ptr, size_t count, eltsize) [Function]
Equivalent to realloc(ptr, count * eltsize), except that this function will fail
safely and reliably in the event that count * eltsize overflows. See Section “Chang-
ing Block Size” in libc.



93

Appendix A GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.


https://fsf.org/

Appendix A: GNU General Public License 54

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.



Appendix A: GNU General Public License 55

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.



Appendix A: GNU General Public License 56

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:



Appendix A: GNU General Public License 57

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.



Appendix A: GNU General Public License 58

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or



Appendix A: GNU General Public License 59

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.



Appendix A: GNU General Public License 60

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so



Appendix A: GNU General Public License 61

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.



Appendix A: GNU General Public License 62

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.



Appendix A: GNU General Public License 63

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.


https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

64

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released


https://fsf.org/

Appendix B: GNU Free Documentation License 65

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING



Appendix B: GNU Free Documentation License 66

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,



Appendix B: GNU Free Documentation License 67

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their



Appendix B: GNU Free Documentation License 68

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.



Appendix B: GNU Free Documentation License 69

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.



Appendix B: GNU Free Documentation License 70

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.


https://www.gnu.org/licenses/

Appendix B: GNU Free Documentation License 71

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~~GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



72

Appendix C Concept Index

A

aliases for environment variables ............... 10
aliases for options............ ... ... oL 10
alternative negation prefixes.................... 13
argument callback example..................... 34
argument callback example, output............. 35
argument types, to options..................... 15
arguments, boolean, to options................. 16
arguments, directory, to options................ 17
arguments, enumerated, parsing................ 22
arguments, enumerated, to options............. 17
arguments, file, to options...................... 17
arguments, floating-point, to options ........... 16
arguments, integer, to options.................. 16
arguments, none, to options.................... 14
arguments, optional, to options................. 14
arguments, required, to options ................ 15
arguments, stream, to options.................. 17
arguments, string, to options................... 16
arguments, suboption, to options............... 17
arguments, to options...................... ... 14
arguments, to options, optional................. 14
arguments, to options, required ................ 14

B

bindings .. ... 1
boolean arguments to options.................. 16
bugs, reporting......... ..o i 1

C

C programming language........................ 1
callback data, freeing ................. ... ... .. 19
callback example............ ... ...l 21
callback example, output....................... 22
callbacks, directories........................... 19
callbacks, files .......... ... i 19
callbacks, indicating error...................... 20
callbacks, option parsing....................... 18
callbacks, option, negatable, why not........... 11
callbacks, ordering ................. ... ... ... 18
codes, error, option parsing .................... 44
command line options, parsing .................. 3
compatibility functions........... ... ... 52

D

data, callback, freeing.......................... 19
declaration, before definition .................... 3
declaration, before definition, example........... 3
declaration, before setting....................... 3
declaration, before setting, example ............. 3
defining after declaration........................ 3
defining after declaration, example .............. 3
designated initializers.............. ... ... ... 3
designated initializers, example.................. 3
die. e 48
directories in callbacks ................. ... ... 19
directory arguments to options................. 17
AyIng . .ot 48

E

enumerated arguments to options .............. 17
enumerated arguments, parsing ................ 22
environment variable negation, not allowed... ... 11
environment variable parsing example.......... 29
environment variable parsing example, output .. 30
environment variable, MU_HELP_FORMAT ......... 39
environment variables, aliases .................. 10
environment, parsing.............ccoeiiiiiii.. 28
error codes, option parsing..................... 44
error reporting...........o i, 48
example of declaration, before definition......... 3
example of declaration, before setting ........... 3
example of defining after declaration ............ 3
example of designated initializers................ 3
example of initializers, designated ............... 3
example of setting after declaration.............. 3
example, argument callback.................... 34
example, argument callback, output............ 35
example, callback ..................iiii 21
example, callback, output ...................... 22
example, environment variable parsing ......... 29
example, environment variable parsing, output . 30
example, formatting text.............. ... ... .. 47
example, formatting text, output............... 47
example, help option........................... 41
example, help option, output................... 43
example, option parsing, ordered ............... 34
example, option parsing, ordered, output....... 35
example, option parsing, ordered, without
argument callbacks................... .. .. 36
example, option, help ......... ... ... ... 41
example, option, help, output .................. 43
example, suboption parsing .................... 26
example, suboption parsing, output ............ 28
example, text, formatting ................ ... ... 47

example, text, formatting, output .............. 47



Appendix C: Concept Index

F

file arguments to options................ ... ... 17
files in callbacks .......... ... il 19
flags, option parsing .............. ... il 31
floating-point arguments to options............. 16
following lines, indenting....................... 46
formatting help....... ... ... . 37
formatting text ....... ... i 45
formatting text example ........... ... ... . 47
formatting text example, output ............... 47
formatting usage message ...................... 37
formatting, help message....................... 40
formatting, man page.............. ..ol 40
formatting, usage message...................... 40
freeing callback data.............. ... . ... ... 19
functions, compatibility ............. ... ... 52
functions, safety .......... ... 48

H

hard wrapping lines............................ 46
headers, including............... ... ool 1
help message formatting ....................... 40
help option ..........co i 39
help option example ........... ... .o 41
help option example, output ................... 43
help, formatting ......... ... ... il 37

I

inclusion of headers.............. ... ... ... ... 1
indenting following lines........................ 46
indenting text........... ... . il 46
indicating error in callbacks.................... 20
initializers, designated............. ... ... ... .. 3
initializers, designated, example ................. 3
integer arguments to options................... 16

L

language, programming, C ...................... 1
languages, programming, other.................. 1
lines, following, indenting ...................... 46
lines, hard wrapping ............. ... ... . ..... 46
lines, long, wrapping.............ooovviiio... 46
linking. ... ..o 1
long lines, wrapping............ccooiiiiiian. 46

M

man option ..........oiiiiiii i 39
man page formatting.......... ... ... .. L 40
MU_HELP_FORMAT environment variable.......... 39

73
N
negatable option callbacks, why not ............ 11
negatable options ............. ... ..ol 11
negation prefixes, alternative................... 13
negation, of environment variables, not allowed . 11
no argument to options ........................ 14
notation used in this manual .................... 1
O
option argument types............... ... ... 15
option arguments ............. ... il 14
option callbacks, negatable, why not............ 11
option parsing callbacks........................ 18
option parsing error codes................oi. 44
option parsing flags........... ... ... o 31
option parsing, ordered ........................ 33
option precedence. .......... ..o 32
option structure........... ... ..o ool 5
option, help....... ... . 39
option, help, example ................... ... ..., 41
option, help, example, output .................. 43
option, man......... ..o 39
optional arguments to options.................. 14
options with optional arguments ............... 14
options with required arguments ............... 15
options without arguments..................... 14
options, aliases..............o il 10
options, command line, parsing.................. 3
options, negatable........... ... ... oL 11
order in which callbacks are called.............. 18
ordered option parsing ............. ... ... 33
ordered option parsing example ................ 34
ordered option parsing example, output ........ 35
ordered option parsing example, without argument
callbacks. ... 36
other programming languages ................... 1
P
parsing command line options................... 3
parsing enumerated arguments................. 22
parsing environment .......... .. ..o o 28
parsing suboptions.......... ... ... oL 25
precedence, of options...............ooiiiia.. 32
prefixes, negation, alternative .................. 13
programming language, C....................... 1
programming languages, other................... 1
R
reporting bugs ....... ... 1
reporting errors . ..... ..o 48
reporting warnings.............. ... ... 48

required arguments to options.................. 15



Appendix C: Concept Index

S

safety functions............ ... ... . 48
setting after declaration......................... 3
setting after declaration, example ............... 3
stream arguments to options................... 17
string arguments to options.................... 16
structure, of options.............. ... .. L. 5
suboption arguments to options................ 17
suboption parsing example..................... 26
suboption parsing example, output............. 28
suboptions, parsing ........... .. ...t 25

T

terms used in this manual....................... 1
text, formatting......... ... ... oLl 45
text, formatting, example ...................... 47
text, formatting, example, output .............. 47

text, indenting.......... ... ... il 46

74
types of arguments to options.................. 15
usage message formatting ...................... 40
usage message, formatting...................... 37

v

variable, environment, parsing example......... 29
variable, environment, parsing example, output. 30

\%\%

WAIDING . vttt 48
why not negatable option callbacks............. 11
wrapping long lines .............. ... ... L 46
wrapping, lines, hard............... .. ... . . 46



75

Appendix D Function and Macro Index

A

mu_die. ...t 48
mu_format ......... ... 45
mu_format_help............oiiiiiiiiiian, 40
mu_format_help man................ooiiiin. 40
mu_format_help_man_string................... 41
mu_format_help_string....................... 41
mu_format_string................. ... ...l 45
mu_opt_context_add_help..................... 37
mu_opt_context_add_help_options............ 39
mu_opt_context_add_options................... 5
mu_opt_context_free................ ... ... ... 4
mu_opt_context_new.............. ... 3
mu_opt_context_new_with_env ................. 3
mu_opt_context_set_arg_callback............ 34
mu_opt_context_set_no_prefix_array........ 13
mu_opt_context_set_no_prefixes............. 13
mu_opt_context_shift ..................... ... 36
mu_opt_context_xadd_help_options........... 51
mu_opt_context_xadd_options................ 50
mu_opt_context_xfree ........................ 50
mu_opt_context_Xnew.................... ... 50
mu_opt_context_xnew_with_env............... 50
mu_opt_context_xset_no_prefix_array....... 50
mu_opt_context_xset_no_prefixes............ 50
MU_PATSE_OPES. ..ttt 4
mu_parse_subopts............... ... 26
mu_shift_args..............ooiiiiiiiiiiii 5
mu_subopt_context_free...................... 26
mu_subopt_context_new....................... 26
mu_subopt_context_set_no_prefix_array..... 13
mu_subopt_context_set_no_prefixes ......... 13

mu_subopt_context_xfree..................... 50

mu_subopt_context_xnew...................... 50
mu_subopt_context_xset_no_prefix_array.... 50
mu_subopt_context_xset_no_prefixes........ 50
MU_VALIE .\ttt e e e 48
mu_vformat........... ... 45
mu_vformat_string............... ... ... ... 46
010 B VA =5 o R 48
MU_WATTL o et e ittt et et ettt e e ettt eeeeanns 48
mu_xasprintf..... ... ... oo il 49
MU_XCALLlOC .ottt ettt 48
mu_xformat ............. . 49
mu_xformat_help............. ... ... ...l 51
mu_xformat_help man.......................... 51
mu_xformat_help_man_string.................. 51
mu_xformat_help_string...................... 51
mu_xformat_string............. ... . ... 49
MU_XMALlloC . .ottt 48
MU_XTealloC .. .ottt et 49
mu_xreallocarray.....................ooo.... 49
mu_xstrdup............ ... ...l 49
MU_XStrndup. ...t 49
mu_xvasprintf ... 49
mu_xvformat.......... .. ... 49
mu_xvformat_string.............. ... ... i 50
MU_OPT_ERR. ... ..ottt e ee i 44

R

reallocarray. ... 52

S

strchrnul ...t e 52

vV

vasprintf ... 52



Appendix E Type Index

13 41 5
enum MU_OPT_ARG_TYPE.......... ..o, 16

enum MU_OPT_HAS_ARG...........coiviiiinnnnnn. 14

76

M

MU_ENUM_VALUE ....... ... ... it 23
MU _OPT. .o 5
MU_OPT_CONTEXT ...... ...t 3
MU_SUBOPT_CONTEXT ...........ccoiiiiiiiinnnn.. 26



7

Appendix F Variable and Constant Index

mu_format_tab_stop........... ... ...l 45
MU_FORMAT_TAB_STOP.........ciiiiiiianann.. 45
MU_HELP_ALL. ... . i 40
MU_HELP_BOTH........ ... .. i, 40
MU_HELP _ENV. ... ... i 40
MU_HELP_LONG. ...... ..ot 39
MU_HELP_MAN_BOTH.........c.iiiriiiinnnnnnn 40
MU_HELP_MAN_LONG......... ..t 40
MU_HELP_MAN_SHORT .........coiiitinnnnnnn. 40
MU_HELP_PREPEND . ......... ... 0. 39

MU_HELP_QUESTION_MARK ....................... 39

MU_HELP_SHORT ........ ..., 39
MU_OPT_ALLOW_INVALID ..............cooiii... 33
MU_OPT_BUNDLE ...t 32
MU_OPT_CONTINUE ............coiiiiiiiinn, 33
MU_OPT_ERR_CALLBACK.............. . ..o 44
MU_OPT_ERR_IO .........ciiiiiiiiiiiiii, 44
MU_OPT_ERR_MAX ... ... ... i 20
MU_OPT_ERR_PARSE............................. 44
MU_OPT_IGNORE_POSIX........... ..., 33
MU_OPT_PERMUTE ......... ... ... 31
MU_OPT_STOP_AT_ARG............ooiiiiiiinn.. 33



	1 Introduction
	Terms and Notation Used in this Manual
	Using Mu in Your Program
	Reporting Bugs

	2 Parsing Options and Environment
	Option Structure
	Aliases for Options and Environment Variables
	Negatable Options
	Negation Prefixes

	Option Arguments
	Option Argument Types

	Option Callbacks
	Parsing Enumerated Arguments to Options
	Parsing Suboptions
	Parsing the Environment
	Option Parsing Flags
	Ordered Option Parsing
	Formatting Help
	Option Parsing Errors

	3 Formatting Text
	Controlling Formatted Output
	Formatting Example

	4 Safety Functions
	5 Compatibility Functions
	A GNU General Public License
	B GNU Free Documentation License
	C Concept Index
	D Function and Macro Index
	E Type Index
	F Variable and Constant Index

