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Abstract

In the present paper a coupling law between the Lattice Boltzmann Method (LBM) for
fluids and the Discrete Element Method (DEM) is introduced to study problems involving
the interaction between fluids and solid (rigid) structures. The DEM particles are modelled
with the sphero-polyhedra method, allowing the representation of general shapes, even non-
convex ones. The method is rigorously validated by an extensive simulation plan measuring
the lift and drag coefficients for several geometries and comparing the results with previous
studies. The method also includes some optimization techniques which are described in the
paper. Finally, simulations of DEM particles with shapes of animals (dolphins and ducks)
are carried out interacting with multiphase and multicomponent LBM fluids, and many
realistic features of this interaction such as buoyancy, sonic wave propagation and fluid
displacement are shown to qualitatively match observations. Some issues with the coupling
law are identified for future research studies on the proposed method. The results show the
potential of the method to be used in the simulation of a wide range of phenomena found
in sectors such as the the mining and oil industries and disciplines such as medicine and
biology.
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1. Introduction

It has always been an issue of any numerical modelling effort the fact that greater ac-
curacy usually requires large amounts of details extracted from observations and fed into
the model, which is often translated into larger computational requirements. Is not difficult
to appreciate how with increasing computational power, the numerical models developed
nowadays are including more and more details that were unmanageable years ago.

The computational power that researchers and engineers currently enjoy is enough to
solve a broad range of models based on partial differential equations by means of methods
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such as the Finite Element Method (FEM). Recently it has also been enough to abandon
the continuous assumption and start studying the macroscopic response of many systems
as a function of the microscopic interactions between the constitutive elements. Examples
of such approaches are the Distinct Element Method (DEM) [1] introduced by Cundall
for granular materials and the Molecular Dynamic Method (MD) [2] for gases and liquids.
In such methods, a macroscopic constitutive equation is not introduced as in the case of
FEM modelling. Instead, the modeller introduces the interactions between the particles
and obtains the macroscopic response of the complex system. DEM and MD have been
very successful tools for research since their results match, qualitatively, the response from
controlled experiments.

Recently DEM has started to be used as a predictive tool [3, 4] despite the main difficulty
of finding the value of the microscopic parameters from experimental set-ups. It is the
author’s opinion that as the computational power increases, DEM will be a viable option
for engineering design at the field scale, and the advent of commercial DEM packages seems
to follow this trend.

Some research efforts are focused in coupling DEM with other methods. One particular
field of interest is the interaction between DEM and Computational Fluid Dynamics (CFD)
methods. The need for such tool is evident for the modelling of a broad range of problems
such as groundwater transport of colloid and contaminants, erosion and the stability of
coastal foundations to name a few.

DEM has been successfully coupled with CFD schemes such as Smooth Particle Hydro-
dynamics (SPH) [5] and FEM solvers for the Navier Stokes equations [6]. These methods
are great for large scale simulations, but lack some details of the fluid at the pore scale.
A set of seminal papers by Owen and collaborators [7, 8, 9, 10] showed the coupling be-
tween DEM and the Lattice Boltzmann Method (LBM) by means of an immersed boundary
method. LBM offers several advantages over other CFD schemes including the locality of the
dynamic steps that facilitates the distribution of the domain into massive parallel systems.
Such locality also facilitates the formulation of laws involving the interaction of the fluid
with moving boundaries which at the ends translates into physically sound coupling schemes
with the DEM [9]. It is easy to introduce multiphase and multicomponent systems into the
LBM formalism by assigning different lattices to the different components and attractive or
repulsive forces to model phase transition and immiscibility [11]. In this way many features
at the pore scale such as the menisci and the capillary interaction are reproduced. It is also
easy, due to the regular lattice configuration, to deal with obstacles of complex shapes [12]
and therefore to cope with the realistic morphology of the porous medium.

For these reasons, the coupling DEM-LBM is a promising tool. It will potentially be able
to tackle problems as complex as the mechanical response of unsaturated soils or to model
industrial applications such as the hydraulic fracturing. But to be able to accurately address
this kind of complexity, the classical DEM spherical element should be abandoned in favour
of particles of general shape and with cohesion to model fracture phenomena. The author
of the present work has implemented previously the sphero-polyhedra method to model the
collision and fragmentation of particles with general shapes [13]. With Voronoi or Delaunay
tessellations, solid blocks can be reproduced without voids and the cohesive parameters can
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be tuned to reproduce any possible elastic moduli, Poisson’s ratios and tensile strengths.
Due to the flexibility of the sphero-polyhedra method, it is a viable choice to expand the

DEM-LBM formalism introduced by Owen et al . The presented research work was done
with that aim. The sphero-polyhedra method generalises the widely used contact detection
between spheres to the collision between polyhedra. In the same way it will be show how
the sphero-polyhedra also generalises the contact law between the LBM fluid and the DEM
particles introduced before in a simple and efficient way.

The paper is structured as follows: Sec. 2 describes independently the DEM and LBM
and then finalizes with the coupling law between the two. Sec. 3 presents a series of vali-
dation examples for different geometries and compare the results with previous studies. In
Sec. 4 some optimization techniques for the proposed law and their advantages are shown. A
preliminary study combining DEM shaped like real animals and multiphase and multicom-
ponent LBM fluids is shown in Sec. 5. Finally in Sec. 6 some conclusions and projections of
the current work are presented.

2. The method

2.1. The DEM sphero-polyhedra approach

The sphero-polyhedra method was initially introduced by Pourning [14] for the simulation
of complex-shaped DEM particles. Later, it was modified by Alonso Marroquin [15], who
introduced a multi-contact approach in 2D allowing the modelling of non-convex shapes, and
was extended to 3D by the author of this paper and his collaborators [16, 13, 17]. A sphero-
polyhedron is a polyhedron that has been eroded and then dilated by a sphere element as
seen in Fig. 1. The result is a polyhedron of similar dimensions but with rounded corners.

The advantage of the sphero-polyhedra technique is that it allows for an easy and efficient
definition of contact laws between the particles. This is due to the smoothing of the edges
of all geometric features by circles (in 2D) or spheres (in 3D).

To define the contact between two sphero-polyhedra P1 and P2, each solid is divided in a
set of geometric features (edges, faces and vertices) and and overlapping check is performed
between each possible pair. For simplicity, lets denominate the set of all the geometric
features of the n-th particle as {Gi

n}. A distance function must be defined to check the
overlapping between the i-th geometric feature of particle 1 and the j-th geometric feature
of particle 2,

dist(Gi
1, G

j
2) = min

(

dist( ~Xi, ~Xj)
)

, (1)

where ~Xi is a 3D vector that belongs to the set Gi
1. This means that the distance for two

geometric features is the minimum Euclidean distance assigned to two points belonging to
them.

Finding this distance between two geometric features is the core of the sphero-polyhedra
method. The simplest case is the distance between two vertices which is the distance between
two points in space. The distance between a vertex and an edge is the distance between the
vertex and the point at the intersection of a ray passing trough the vertex and the edge and
perpendicular to the latest. The distance between a face and a vertex is usually the distance

3



erosion dilation

Figure 1: A 3D sphero-cube: Initially the cube is eroded or shrunk by a distance equal to the sphere radius,
and then is dilated by the same sphere. After this morphological transformation the cube ends up having
rounded corners.
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between the vertex and a point that is connected to it by a line perpendicular to the face
plane. In general, in this cases, finding the distance involves a linear or quadratic system of
equations and no iterations are needed.

Since both particles are dilated by their sphero-radii R1 and R2, it can be said that there
is a complete contact when the distance between the two geometric features is less than the
addition of the corresponding radii used in the sweeping stage, i.e.:

dist(Gi
1, G

j
2) < R1 +R2, (2)

and the overlapping distance δ(Gi
1, G

j
2) = R1 + R2 − dist(Gi

1, G
j
2) can be defined. Here,

the advantage of the sphero-polyhedra technique becomes evident since this definition for
contact based on the overlapping is similar to the one for the contact law of two spheres [3].
Fig. 2 shows the possible overlapping distances that are considered in the method between
vertices and vertices, edges and edges and vertices and faces. With these definitions, the
face face interaction is not needed.

δ

(a)

δ

(b)

δ

(c)

Figure 2: Definition of the overlapping distance δ(Gi
1
, Gj

2
): (a) vertex-vertex; (b) edge-edge; (c) vertex-face.

No other contacts are needed to define the collision between polyhedra.

The minimum distance for the sets G1 and G2 is given by the Euclidean distance between
two of their points ~X1 and ~X2. This allows for the definition of a normal vector ~n given by:

~n(Gi
1, G

j
2) =

~X2 − ~X1

‖ ~X2 − ~X1‖
. (3)

With this definition, the same expression for the forces defined in conventional DEM codes
can be easily employed in this method. For instance, a normal elastic force ~Fn, proportional
to the overlapping length, is defined according to

~Fn(G
i
1, G

j
2) = Knδ(G

i
1, G

j
2)~n(G

i
1, G

j
2), (4)

where Kn is a parameter called the normal stiffness.
The previous normal force is defined for a pair of geometric features. The net elastic

force is the addition of all these forces for each possible pair of geometric features. However,
for general polyhedra, it is only necessary to consider the interactions between vertices and

5



faces and the interaction between edges and edges. The total force is the addition of all the
forces for each pair of overlapping geometric features. The same applies for the total torque.

Friction and viscosity forces are also added to simulate inelastic collisions as explained
in [13]. Finally, all these forces are added to obtain the net force over a particle. The forces
that are going to be described in the following sections coming from the coupling with the
LBM fluid are also added. Afterwards, Newton’s second law is solved for which the Verlet
algorithm is employed [18]. Each of these forces also provide the torque, where the point of
application is at the middle of the line connecting the two contact points for each pair of
geometric features that are in contact. With the torque, the angular dynamical equation of
movement is solved with the Leap Frog algorithm [16, 19].

2.2. The Lattice Boltzmann Method

For the present study the Lattice Boltzmann D3Q15 scheme was used [20]. In this
scheme the space is divided into a cubic domain where each cell has a set of probability
distribution functions fi, representing the density of fluid particles going through one of the
15 discrete velocities ~ei (see Fig. 3). The density ρ and velocity ~u at each cell position ~x

can be determined by:
ρ(~x) =

∑15
i=0 fi(~x)

~u(~x) =
∑

15

i=0
fi(~x)~ei

ρ(~x)

(5)

Each distribution function has an evolution rule derived from the Chapman Enskog
expansion of the Boltzmann equation [21],

fi(~x+ ~eiδt, t+ δt) = fi(~x, t) + Ωcol, (6)

where ~x is the position of the local cell, δt is the time step and Ωcol is a collision operator
representing the relaxation processes due to the collision of the fluid particles. For this study,
the widely accepted Bhatnagar-Gross-Krook (BGK) model for the collision operator [22] was
used, which assumes that the collision processes drive the system into an equilibrium state
described by an equilibrium function f eq

i ,

Ωcol =
δt

τ
(f eq

i − fi) (7)

with τ being the characteristic relaxation time. It has been shown that the Navier Stokes
(NS) equations for fluid flow [23] are recovered if,

f eq
i = ωiρ

(

1 + 3
~ei · ~u
C2

+
9(~ei · ~u)2

2C4
− 3u2

2C2

)

(8)

and the kinetic viscosity of the fluid (ν) is given by,

ν = (τ − 0.5)
δ2x
3δt

(9)
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Figure 3: The LBM cell of the D3Q15 showing the direction of each one of the 15 discrete velocities
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with C = δx/δt, a characteristic lattice velocity defined by the grid spacing δx. Eq. 9
imposes a constrain on the choice of τ , which must be greater than 0.5 for the viscosity to
be physically correct. It is also known that values close to 0.5 produce unstable numerical
behaviour [21] due to the non-linearity of the NS equations; hence it is advisable to keep its
value close to one.

In order to model multicomponent and multiphase flows as well as body forces such as
the gravity force [24], a net force is introduced for each cell. The net force ~F modifies the
velocity used in the calculation of the equilibrium function as follows,

~u′ = ~u+
δt ~F

ρ
. (10)

In the case of gravity, the force is simply ~F g = ρ~g where ~g is the gravitational accelera-
tion [25].

Multiphase and multicomponent fluids are modelled in LBM with the Shan-Chen [26]
approach by introducing attractive (for multiphase) or repulsive (for multicomponent) forces,
representing the interaction between the fluid molecules. This forces are of the form:

~F a,r = −Ga,rψ(~x)

15
∑

i=1

ωiψ(~x+ δt~ei)~ei, (11)

where the sub-index r stands for repulsion and a for attraction, and the function ψ is a
bonded potential for the case of multiphase simulations or the density value at the cell for
multicomponent cases. Interested readers should refer to reference [11] for details on how
to implement multiphase and multicomponent LBM simulations successfully.

2.3. The coupled method

With the LBM and DEM methods explained separately, the algorithm for the cou-
pling can be explained in detail. The method is an extension of the one introduced by
Owen et al [9] for spheres which is going to be introduced first.

2.3.1. Coupling law for spheres

One sphere moving through the lattice representing the fluid will intersect some LBM
cells. Inside the spheres, the cells will be fully occupied by the DEM sphere. Outside of it,
the volume fraction occupied by it will be zero. In the cells comprising the sphere surface,
the volume fraction occupied by the DEM particle is between 0 and 1. The coupling law
must ensure a smooth transition as the sphere invades and vacates the LBM cells during its
movement. This coupling law modifies Eq. 6 to account for the volume occupation fraction
ε,

fi(~x+ ~eiδt, t+ δt) = fi(~x, t) + (1− Bn)

(

δt

τ
(f eq

i − fi)

)

+BnΩ
s
i , (12)

where Bn is a weight coverage function of εn for the n−th cell, and Ωs
i is a collision operator

representing the change of momentum due to the collision of the DEM sphere within the

8



LBM cell. The collision operator between LBM cells and DEM spheres takes the following
form [27, 28],

Ωs
i = [fi′(~x, t)− f eq

i′ (ρ,~vp)]− [fi(~x, t)− f eq
i (ρ,~vp)] , (13)

with the symbol i′ denoting the direction directly opposing the ~ei vector and ~vp the velocity
of the DEM sphere at the cell position (~x),

~vp = ~ω × (~x− ~xCM) + ~vCM , (14)

which depends on the sphere velocity ~vCM , angular velocity ~ω and position ~xCM of the
sphere’s center of mass. This is a modification of the commonly used bounce-back condition
within cells tagged as solids [21]. In fact if ~vp = ~0 and ε = 1, the bounce back condition is
recovered.

The weight coverage function has also a proposed form [9] in terms of the volume fraction
ε,

Bn(ε) =
εn(τ − 1/2)

(1− εn) + (τ − 1/2)
, (15)

which has been empirically deduced to accurately simulate Poiseuille flow [28].

The total force ~F over a DEM sphere is taken as the addition of the change of momentum
given by each of the cells that the sphere covers,

~F =
δ3x
δt

∑

n

Bn

(

∑

i

Ωs
i~ei

)

. (16)

And the torque ~T is calculated similarly,

~T =
δ3x
δt

∑

n

[

(~xn − ~xCM)×Bn

(

∑

i

Ωs
i~ei

)]

, (17)

where it is assumed that the units of ~ei are the same units of the C parameter.
An important implementation issue is the calculation of the volume fraction occupied

by the DEM spheres ε. This issue is extensively discussed in [9] where several schemes, and
their strengths and drawbacks, are shown. The conclusion is that direct computation of
the intersection volume is computationally expensive, and hence impractical for a coupled
simulation framework. Several methods are proposed including the numerical integration of
the intersection volume.

Herein an efficient way to calculate ε based on the computation of the portion of edges
covered by the DEM sphere is illustrated and it will be validated in the following section. In
Fig. 4 the algorithm to calculate the volume fraction approximately is shown. The algorithm
is based on the length of an edge dwelling inside the sphere. If an edge is defined as the set
of points between the two limits ~p0 and ~p1, then each of these points ~p can be described in
terms of a parameter s as,

~p = ~p0 + s(~p1 − ~p0), (18)
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Figure 4: The DEM sphere interacting with an LBM cell (cube). The blue lines are the portion of edges
covered by the sphere.
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with s going from 0 to 1. Finding the length inside the sphere is reduced to finding the the
intersection points with the sphere surface. This is expressed as the following equation:

(~p− ~xCM) · (~p− ~xCM) = R2, (19)

with R the sphere radius. This equation gives a quadratic polynomial to solve for the pa-
rameter s with two solutions. If the solutions are imaginary then the sphere never intersects
the edge. On the other hand if they are real and both between 0 and 1 then they represent
the limit points of the intersection segment. Finally if one is less than 0 or greater than 1
then it is replaced by the edge limit points ~p0 and ~p1 accordingly. The intersection length
le is computed for each of the 12 edges. Then it is compared with the total edge length to
obtain the volume fraction,

ε =

∑12
e=1 le
12δx

. (20)

2.3.2. Coupling law for sphero-polyhedra

One of the main advantages of the sphero-polyhedra method is the simplicity on how
the collision law between to DEM spheres can be generalized to polyhedra. In the same
way, the coupling law between a DEM sphere and a LBM cell can be extended to the
sphero-polyhedra in a relatively easy way.

Following the reasoning of Eq. 1 there is a distance function between the center of the
cell ~x and a given geometric feature Gi of the DEM sphero-polyhedron,

dist(~x, Gi) = min
(

dist(~x, ~X)
)

, (21)

where ~X is a point of the geometric feature. Finding the unknown point ~X that minimizes
the distance is reduced to solving a parametric equation of one parameter (similar to Eq. 19)
for edges and two parameters for faces. In either case the solution does not require an
iterative procedure improving efficiency.

Once the point of minimum distance ~X is found, a sphere of radius equal to the particle’s
sphero-radius centred at ~X is defined. From there, the algorithm follows the coupling law
for spheres described in the previous section. Fig. 5 illustrates the procedure. The forces
are supposed to be applied at the cell center and then the forces and torques follow Eqs. 16
and 17 in the same way.

Another fact that it is important to mention is that for most particles, checking the
intersection of a given cell with each geometric feature may be redundant. In general,
if a particle is a closed polyhedron (such as a sphero-cube or sphero-tetrahedron) then
the intersection should only be calculated for the faces, ignoring the interaction with the
edges. This is an important issue that needs to be taken into account in order to improve
performance.

2.4. Details on the integration time step for the coupled method

As discussed in reference [9] the DEM-LBM framework suffers some of the drawbacks
originated from the explicit integration schemes for both the DEM and the LBM. The
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Figure 5: Interaction between an LBM cell and a sphero-edge. The first part of the algorithm (left) is to find
the point inside the edge that minimizes the distance (yellow line) with the LBM cell center. Once found,
a sphere is positioned at that point (right) with radius equal to the particle’s sphero-radius. The coupling
law for spheres is applied to that sphere by finding the length of intersection le between the cell edges and
the sphere. Eq. 20 is then applied to find ε.

explicit nature of the Verlet integration for DEM provides a clear limit for the integration
step [29],

δDEM
t ∼

√

Mmin

Kn

(22)

where Mmin is the smallest value for the masses of all particles. However setting time steps
smaller than this limit may not be enough, specially for particles with a shape significantly
different than the sphere such as flat particles. As a general rule it is better to take a time
step for the DEM integration that is one or possibly two orders of magnitude below this
critical limit. On the other hand, the LBM time step is given by Eq. 9,

δLBM
t =

(

τ − 1

2

)

δ2x
3ν
, (23)

where δx and ν are chosen to represent the physical fluid and τ determines the overall
stability of the method. The true time step of the coupled method should be the smallest of
the two. In the case that δLBM

t < δDEM
t then the selection of the time step is straightforward

since in DEM choosing a smaller time step improves the accuracy and does not alter the
physical properties of the particles. On the other hand, the case when δDEM

t < δLBM
t is more

problematic, basically due to the fact that if the relaxation parameter τ takes values closer
to 1/2, the LBM integration scheme becomes unstable. So in general it is a better strategy
to avoid the last case and choose the critical LBM time as the overall time step by choosing
a proper δx even at the cost of increasing the number of cells. In case this is impossible, a
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sub cycle algorithm is also proposed in [9] where the DEM and LBM have different time
steps and in the sub-cycles between LBM time steps the LBM is frozen and the dynamics
of the DEM are integrated. For the simulations presented in this paper this last case was
avoided since it was possible to always set δLBM

t < δDEM
t . However, this sometimes meant

lowering the value of the stiffness Kn to unrealistic levels. A solution to this may be the use
of an implicit integration scheme which is already proposed in the literature [30] where the
DEM time step is independent from the stiffness. This should be the focus of future studies
refining the approach introduced in this paper.

3. Validation

3.1. Validation for spheres

To validate the method, a comparison with the work carried out by Owen et al [9]
is done to measure the drag coefficient of a sphere immersed into the fluid as a function
of the Reynolds number Re. The LBM domain is formed by a lattice of 240 × 60 × 60
cells. The lattice size step is δx = 0.004m. The DEM sphere is placed at the domain’s
center and it has a radius of 0.036m which is equivalent to 9 LBM cells. The fluid density
was taken as ρ = 1000kg/m3, the kinematic viscosity ν is 10−4m2/s and the time step
δt = 1.6 × 10−2s. Periodic boundary conditions are applied to the three directions and
a constant body acceleration of 7.81 × 10−5m/s2 is applied to the LBM cells allowing to
measure the drag coefficient over a wide range of Reynolds numbers. Fig. 6 shows a plane
slice plot with the velocity field surrounding the DEM sphere for a Reynolds number of 30
preventing the formation of eddies behind the sphere.

To calculate the Reynolds number, the sphere’s diameter D is used as the characteristic
length, and the velocity is taken as the average velocities of the unoccupied cells vave,

Re =
vaveD

ν
. (24)

The drag coefficient CD is calculated by the reaction force x component, Fx over the sphere
(Eq. 16) and the average fluid density ρ,

CD =
2Fx

ρv2aveπD
2/4

. (25)

Fig. 7 shows the results for the drag coefficient as a function of Re. For comparison,
the results from the previous study of Owen et al [9] are shown as well. Additionally, an
empirical correlation [31] found with experimental data is also presented:

CD ≈ 24

Re
+

6

1 +
√
Re

+ 0.4 (26)

As can be seen, the method to calculate the volume fraction ε from Eq. 20 gives very
similar results as the method used by Owen et al [9]. It is also relatively easy to implement
requiring few calculations to compute ε. One point of concern is when the sphere intersects
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Figure 6: Cross sectional contour plot of the fluid velocity field surrounding a DEM sphere for Re = 30.
The colourmap is proportional to the fluid velocity.
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Figure 7: Sphere drag coefficient CD as a function of the Reynolds number Re.
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the LBM cell but no its edges. In this case although the real volume fraction is non-zero,
Eq. 20 will give ε = 0. This is usually solved by ensuring that the sphere covers a wide range
of LBM spheres. In the present case the radius of the sphere was 9 LBM cells which seems
to be enough to reproduce reported results with similar methods, eliminating this problem.

Another validation for spheres is the simulation of the Magnus effect. The Magnus effect
is a lift force applied over a spinning sphere due to the fluid flow asymmetry introduced by
the angular velocity. Fig. 8 shows the velocity field disturbed by the spinning sphere. The
sphere is spinning in a counter-clockwise direction, dragging the fluid close to it. The net
effect is a decrease in the fluid’s velocity at the top portion of the sphere due to this drag
and a velocity increase at the bottom. If the system is considered as an inefficient air pump,
air will build up at the top causing higher pressure at this point. This pressure gradient
pointing downwards generates a force over the spheres in the same direction. The Magnus
effect is commonly found in ball sports such as baseball and soccer where it gives the ball a
distinct trajectory. With this force, a lift coefficient can be defined in complete analogy to
the drag coefficient,

CD =
2Fy

ρv2aveπD
2/4

, (27)

Hölzer and Sommerfeld [32] conducted a number of simulations on the Magnus effect with
a similar LBM scheme, without coupling it with the DEM. A dimensionless variable called
the particle’s spin number SPa is defined for comparison with the results of this previous
study,

SPa =
ωD

2vave
, (28)

with ω the sphere’s angular velocity.
Simulations varying SPa were conducted for Re = 30 a value that ensures that eddies do

not appear in the simulation. Fig. 9 shows the dependence of the lift coefficient produced by
the Magnus effect. It also shows the results obtained by Hölzer and Sommerfeld, and a fairly
good match with the results from this study can be appreciated. For this small Reynolds
number range the dependence of CL on SPa, and therefore on the angular velocity, appears
to be linear.

3.2. Validation for sphero-polyhedra

The same simulation domain was used to test the validity of the law for sphero-polyhedra.
Initially a single sphero-cube is placed at the domain’s center. Fig. 10 shows the simulation
setup. The cube size is fixed to ensure that the equal volume sphere has a radius of 9 LBM
cells. The sphero-radius of the particle is set at 5% of the cube length. As can be seen,
if the cube is rotated along the z axis (perpendicular to the page) an angle θ, the flow
loses its symmetry and a force appears along the y axis. A previous study conducted by
Hölzer and Sommerfeld [32] has calculated the drag coefficient using LBM simulations, for
several geometries including cubes. In this previous study a different coupling law (not a
full DEM-LBM coupling) was used and the drag and lift coefficients for several values of Re
are reported. Figs. 11 and 12 compares the results obtained in this study with the results
from Hölzer and Sommerfeld for Re = 30 and different values of θ.

16



Figure 8: Cross sectional contour plot of the fluid velocity field surrounding a spinning DEM sphere with
an angular velocity ω. The colourmap is proportional to the fluid velocity
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Figure 9: Sphere lift coefficient CL as a function of the particle’s spin number SPa.
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Figure 10: Cross sectional contour plot of the fluid velocity field surrounding a DEM sphero-cube of the xy
plane (camera parallel to z axis). The colourmap is proportional to the fluid velocity.
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Figure 11: Sphero-cube drag coefficient CD as a function of the θ angle for Re = 30.
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Figure 12: Sphero-cube lift coefficient CL as a function of the θ angle for Re = 30.
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Both studies show a similar value for both coefficients with a maximum difference of
3%. Both studies show a maximum value for CD at θ = 45◦. At this point, the cube’s area
perpendicular to the flow direction is greater than when θ = 0◦ or θ = 90◦, increasing the
overall drag. The lift coefficient is highly affected by θ. At three points is equal to 0 since,
at this angles, the cube has a mirror symmetry with the x axis. For both studies, CL take
extreme values at approximately θ = 23◦.

A final simulation is presented of two sphero-cubes colliding with each other. The pa-
rameters are changed from the previous simulation to ensure that the dynamic viscosity of
the fluid (µ = νρ) is kept small and the particles do not suffer much dissipation. The fluid
density is set to 100kg/m3 while the solid density is still 3000kg/m3. The kinetic viscosity
was lowered to ν = 1.5 × 10−5m2/s, the relaxation parameter was kept as τ = 0.6 and the
space step δx = 0.001m. This gives a time step of δLBM

t = 2.2 × 10−3s. The cubes have
dimensions of 10 LBM cells (1 cm) and the collision stiffness Kn = 21N/m which gives a
critical time step of δDEM

t = 0.01s which is larger than the LBM time step. The parameters
are set for the collision to be perfectly elastic in absence of fluid and the particles are fric-
tionless. Both particles are given an initial velocity of 1cm/s in opposite directions. These
velocities ensure a Reynolds number close to 10.

Fig. 13 shows four snapshots of the collision simulation at different time steps. As can be
seen in the snapshots and the video attached as supplementary material, the movement of
the sphero-cubes leaves a clear velocity trail behind them and a circulation vortex is formed
at the sides of each cube. The collision suddenly decelerates both particles producing a shock
wave that can be appreciated at the second snapshot. The wave travels at the lattice speed
of sound (C/

√
3). Then the angular momentum over the particles gained by the collision

produces a rather complex flow pattern characterised by further vortices. Finally at the last
slide most of the energy is dissipated due to the viscosity of the fluid and the particles are
drifting apart with a significant lower velocity.

As explained above, the only forces over the particles are the elastic collision force and
the fluid forces due to the LBM. There are no artificial dissipative terms added to the
particles’ net force as is usually implemented in DEM simulations to ensure the convergence
of the simulation and the presence of inelastic collisions [13]. Immersed into the LBM, the
DEM particles do not need these dissipative terms since the fluid dissipates the DEM kinetic
energy. Fig. 14 shows the total kinetic energy (linear and rotational) for both particles as
a function of time. It decreases as is expected for a particle immersed in fluid with the
higher dissipation occurring at the beginning due to the fact that the drag coefficient CD is
higher at lower Reynold numbers. The collision is clearly identified as the point where the
kinetic energy has suddenly decreased since at this point the particles are in contact and are
exchanging kinetic energy for potential energy at the collision spring. The rate of energy
dissipation is lower around the collision time span due to the feedback provided over the
particles by the two opposite flow directions. At the end of the simulation more than 80%
of the initial energy has been dissipated by the LBM fluid.
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Figure 13: Snapshots at different times of two DEM sphero-cubes in a collision course. The color map and
arrows represent the velocity field. The video is attached as supplementary material.
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Figure 14: Total kinetic energy of the DEM sphero-cubes in time. The total kinetic energy comprises the
linear and rotational energies. The time span where the collision occurs is marked with a circle in the graph.
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4. Performance issues of the proposed coupling model

It is easy to identify the step of finding the distance between the LBM cell and the
geometric feature of the sphero-polyhedron Eq. 21 as the efficiency bottleneck of the proposed
coupling scheme. Finding the volume fraction ε for each cell and each geometric feature can
quickly impair the algorithm performance. A Verlet list algorithm, similar as the one used
to speed up DEM simulations, is suggested to address this issue [33]. Basically at the
beginning of the simulation a list of pairs between cells and geometric features is formed
by checking which pairs have a distance (defined by Eq. 21) smaller than a parameter α.
During the simulation the only cell-geometric feature pairs checked for intersections are the
ones belonging to this list. The list is updated if one of the particles’ vertices moves more
than α/2 from the position were the list was updated the last time. In general the choice of
α depends on the problem [33]. If the mean velocity of the particles is supposed to be high
then a large value of α is advisable to avoid the computationally expensive Verlet list update
step. Otherwise, for quasi stationary particles, a small value for α ensures few intersection
checks per time step. In the previous simulation a value for α equal to 10 LBM cells was
chosen. The method is illustrated in Fig. 15.

The Verlet list algorithm ensures that the computational complexity of the coupling
scheme does not depend strongly on the DEM shape complexity. In Tab 1 the average time
for the three geometries considered in the previous section is shown. The simulations were
carried out in a 8 core Intel(R) Xeon(R) CPU L5520 @ 2.27GHz running for 60000 time
steps with a 240 × 60 × 60 LBM cells grid. The shape complexity sightly increases the
computational requirements, but not by a significant amount due to the Verlet lists.

Table 1: Simulation times for different DEM shapes

Sphere 8h43m
Sphero-tetrahedron 9h54m

Sphero-Cube 10h7m

However, if the size of the particle is large enough to include many LBM cells in a
particular list, then the computation speed is going to decrease. Fig. 16 shows the final times
for a simulation using a sphero-cube with a variable diameter D for its volume equivalent
sphere. As the size of the obstacle grow, more LBM cells are allocated into the Verlet list
for each geometric feature increasing computational complexity. This study shows that for
regular shapes such as sphero-cubes and sphero-tetrahedra a value of 9-10 LBM cells for
the diameter of the equivalent volume sphere is a fair compromise between an accurate
prediction of the flow effects and computational performance.

5. Implementation details of the DEM-LBM coupling method with multiphase

and multicomponent fluids

In this section, a less rigorous simulation is going to be performed using a multiphase
and multicomponent LBM. In the LBM literature it is common to express the relevant
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Figure 15: The Verlet list method applied to the coupling scheme. The sphero-edge (red line center) has a
sphero-radius R and is immersed into the LBM grid. The method described in Sec. 2.3.2 is applied to the
cells inside the Verlet halo (blue area). This Verlet halo has a characteristic distance α. The list are updated
when at least one of the limit points of the sphero-edge moves further than α/2 from the initial position.
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Figure 16: Computation time for a simulation of a sphero-cube with a varying diameter of its volume
equivalent sphere D. The number of time steps is 6000. A power law is fitted with an exponent of 2.54.
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quantities in terms of lattice units (the system in which δx = δt = ρu = 1 with ρu the
units of density) instead of physical units. For easy comparison and implementation, the
parameters of the LBM scheme used in this part are going to be expressed in both unit
systems. The conversion between units is easy once the grid size δx, the time step δt and the
density units ρu are properly defined with dimensional analysis. The simulation will involve
a LBM swimming pool and a DEM particle with the shape of a dolphin diving into it.

First the system of two fluids (represented by one LBM grid each) is defined. The domain
has dimensions of 100× 100× 200 LBM cells, totalling 4000000 cells for both fluids with a
grid size of δx = 0.02m. Gravity is defined as pointing in the −z direction and has a value of
0.001δx/δ

2
t = 9.8m/s2 which defines the time step as δt = 0.0014s and the speed parameter

C = 14.28m/s. This gravity force is applied to both LBM fluids and to the DEM dolphin.
The value for the relaxation constant τ = 1 gives a kinetic viscosity of 4.7×10−4m2/s which
is two orders of magnitude greater than the real viscosity of water. One alternative to have
a more realistic viscosity would be to define a finer grid size (two orders of magnitude finer)
but then the number of cells will be one million times larger which is unmanageable with
the average computational power found nowadays.

For each fluid the attractive constant Ga (Eq. 11) is defined, which helps to define its
properties. For the fluid that is representing the liquid Gw

a is −200ρu/δ
2
xδ

2
t . In a previous

study [11], the author found that this value for the attractive contact produces a liquid
phase with an average density of 1119.2ρu (although it changes drastically due to the high
compressibility of the liquid phase). Therefore, to obtain a liquid density of 1000kg/m3,
ρu = 0.8935kg/m3. The attractive constant for the second fluid Gg

a is set to zero. The
repulsion constant Gr (Eq. 11) controlling the immiscibility of both fluids is set to 0.001δx/δ

2
t .

The domain is filled up to half its height with the liquid fluid at a density of 2300ρu. The
reason that it is filled with a higher density than the equilibrium one (1119.2ρu) is due to
the compressibility of the liquid phase under gravity which will be shown later on. In these
cells the second fluid is also introduced but with a considerably lower density (0.001ρu) since
due to stability of the LBM algorithm no cell can have zero density. In the upper part of
the domain both fluids are also introduced but the gaseous fluid with 10ρu and the liquid
fluid with 0.001ρu.

The DEM sphero-dolphin is built from triangular mesh of 469 triangles measuring ap-
proximately 1.2m= 60δx from tip to tail and with a density of 2000kg/m3 and an sphero-
radius of 1δx. The domain is enclosed by a box formed by six sphero-planes that can
interact with the dolphin to prevent it from leaving the dolphin. The stiffness constant
Kn = 60000ρuδ

3
x/δ

2
t = 219kN/m keeps the critical time step δDEM

t higher than the LBM
time step although it makes for an extremely soft pool bottom. Fig. 17 shows the ini-
tial setup. The sphero-dolphin is initially performing a somersault by imposing an angular
velocity of ω = 0.005rad/δt = 3.5714rad/s.

Fig. 18 shows four snapshots of the dolphin going into the water and colliding with
the DEM sphero-plate at the bottom. For a more detailed view, please refer to the video
attached as supplementary material.

One important issue is the question of fluid displacement by the DEM particle. In fully
saturated incompressible conditions, as the ones imposed during the drag and lift coefficient
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Figure 17: The simulation domain: A DEM dolphin is built from a triangular mesh comprising 469 triangular
faces. As explained in the text the LBM domain is fill up to the middle height with the liquid fluids. There
are five DEM plates (not visible) enclosing the LBM domain and preventing the dolphin from leaving it.
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(a) (b)

(c) (d)

Figure 18: Snapshots at different times of the DEM sphero-dolphin simulation diving into the LBM pool.
The video is attached as supplementary material.
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measurements, fluid displacement is not an issue since most cells have roughly the same
density with slight deviations. However in multiphase and multicomponent simulations the
densities can change significantly across the small thickness of the interface separating both
fluids. An unfortunate consequence of this is that the liquid fluid may appear inside the
sphero-dolphin. Moreover, if the DEM particle moves too fast, Eqs. 12 and 13 will produce
negative values for the LBM distribution functions, affecting the stability of the method. It
has been verified empirically that one way to ensure these undesirable effects is to ensure
that any point across the surface of the DEM particle moves considerably slower than the
lattice speed parameter C. Therefore, even under free fall conditions, the simulation cannot
run beyond the time when the DEM particle move at a speed comparable to C. Fig. 19
shows how during the dolphin simulation, fluid displacement occurred as expected although
there is still a small quantity (negligible compared with the surrounding medium) of fluid
permeating into the sphero-dolphin.

As mentioned before, one of the problems of the Shan-Chen multiphase and multicom-
ponent formalism is that the liquid phase can be highly compressible which makes rigorous
validation of the buoyancy forces difficult. Fig.19 shows the distribution of fluid density as
the sphero-dolphin is diving. As can be seen, the displacement of the fluid by the sphero-
dolphin produces density fluctuations travelling as waves at the lattice speed of sound in
front of it. However the density can reach values as high as 5 times the original density
which is unrealistic for real fluids like water. This is a problem which is caused by the
high compressibility of the liquid phase in the Shan-Chen model which has been reported
before [11].

Buoyancy is still present in the method despite the fact that it may not behave as in real
water due to the high compressibility. A simulation of a DEM sphero-duck (video attached
as supplementary material) is carried out with the same parameters as above but with a
domain with half the height. Also de density of the sphero-duck (600ρu) is lower than the
liquid fluid density at equilibrium. The sphero-duck is eventually risen above the liquid
level and stays afloat. The video has been attached as supplementary material and some
snapshots are shown in Fig. 20.

To conclude, The LBM Shan-Chen model combined with the DEM sphero-polyhedra
shows a qualitatively agreement with several phenomena found in situations of solid-fluid
interaction including: buoyancy, fluid displacement and sonic wave propagation. Two points
need to be addressed before any rigorous validation effort can be undertaken with the Shan-
Chen model combined with the DEM sphero-polyhedra and are listed as a proposal for
future research endeavours:

• A correction to the Shan-Chen model to include the hard ball repulsion of a typical Van
der Waals fluid. This will mitigate the high compressibility and increase the speed of
sound to approach realistic values for water. It will also permit accurate measurements
of the sonic waves produced by the fluid displacement.

• A correction to Eqs. 16 and 17 to account for the pressure given by a more realistic
equation of state for the fluid. As it is expressed right now, the force over the particle
is proportional to the density of the fluid. This is good enough for the simulations
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(a)

(b)

Figure 19: Snapshot of the sphero-dolphin simulation middle cross section showing fluid displacement with
(top) and without (bottom) the sphero-dolphin. The colour map is proportional to the density with blue
representing 0 density and red the maximum value of 5552ρu = 4961kg/m3. As can be seen, the fluid density
inside the dolphin is significantly smaller than at the surrounding space due to the fluid displacement.
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(c) (d)

Figure 20: Snapshots at different times of the DEM sphero-duck simulation diving into the LBM pool. The
video is attached as supplementary material.
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carried out to measure the lift and drag coefficient since it was under incompressible
conditions and there were no other phases or fluids. For these conditions the equation
of state is the ideal gas law and the density is proportional to the pressure. However for
more complex equations of state, the pressure is no longer proportional to the density.

6. Conclusions and projections of this work

An extension for the Owen et al [7, 8, 9, 10] coupling law for DEM spheres interacting
with LBM fluids is introduced in the present work. The extension generalizes the coupling
law for spheres to more complex particles called sphero-polyhedra [13, 33, 17, 16]. The
sphero-polyhedra method simplifies the coupling law with the LBM fluid in the same way
that it simplifies the collision law with DEM particles.

The method is validated with previous results obtained for spheres by Owen et al [9]
and for general shaped bodies by Hölzer and Sommerfeld [32] in measurements of drag and
lifting coefficients under a moderate Reynolds number regime (Re = 20− 100). It is shown
as well that the complexity of the method is not affected significantly with the complexity of
the DEM shapes involved, as simulations with spheres, sphero-tetrahedra and sphero-cubes
took similar times to finish. This independence of the computational complexity on the
shape is achieved by the introduction of a contact list, similar to the Verlet list concept used
in DEM simulations [33]. The lists store pairs of DEM features (face, edges or vertices) and
LBM cells to check if they overlap and to apply the coupling law. However, the complexity
grows in a quadratic manner with the size of the DEM particle since bigger particles will
have larger contact lists and more checks per time step.

Finally, a plausibility check is carried out with multiphase and multicomponent LBM
fluids using the widely used Shan-Chen [26, 11] method. The model reproduces qualitatively
many real phenomena such as fluid displacement, sonic wave propagation and buoyancy.
However, in order to undertake rigorous validation, some issues need to be addressed and
the author have listed them for future studies. The first one is a modification of the Shan-
Chen model to include the hard ball repulsion found in Van der Waals gases to reduce the
high compressibility of the liquid phase. The second issue is a modification of the DEM-
LBM coupling law (Eqs. 16 and 17) to provide a force over the DEM particle proportional
to the fluid pressure and no to its density as it is formulated now.

The results shown in this paper illustrate the potential of the LBM-DEM sphero-polyhedra
coupling. Although for this work the drag and lift coefficients were measured in a moderate
range of Reynolds numbers, with corrections for turbulent flow as the ones proposed by
Feng et al [7] larger values for Re can be reached. Therefore, the method could be used in
aircraft design.

Another area where the method could be used is in the study of geomechanical processes
involving the interaction with fluids. The author has introduced before a cohesion method to
model fracture and damage phenomena with the DEM sphero-polyhedra [13]. By combining
this method with the LBM, a fully simulation engine for the hydraulic fracturing [34] process
could be developed. The hydraulic fracturing is a stimulation treatment used in several
industrial sectors such as oil extraction, CO2 sequestration and geothermal energy plants.
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However, this treatment has risen many environmental concerns, and proper modelling tools
are needed to learn how to mitigate undesirable collateral effects.

The LBM-DEM coupling scheme can be implemented to model contaminant and radio
nuclei transport trough underground water networks, as the ones present in mining sites.
It can also be used to simulate the movement of parasites and viruses across the blood
vessels of the human body. With flexible DEM particles it can be applied to understand the
propulsion methods of fishes, cetaceans and birds. And with a proper equation of state for
the LBM fluid the dynamics of man made submerged objects could be studied.

In short, the proposed method could be used in a broad range of disciplines: Aero-space,
civil, mining and environmental engineering, biology, medicine and physics. It is expected
to have an important impact in future modelling efforts in both science and engineering.
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