
A Reader Framework for Guile
for Guile-Reader 0.6.2

Ludovic Courtès

Edition 0.6.2
8 March 2017

This file documents Guile-Reader.

Copyright c© 2005, 2006, 2007, 2008, 2009, 2012, 2015, 2017 Ludovic Courtès

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

A Reader Framework for Guile 1

1 Introduction . 3

2 Overview . 5

3 Quick Start. 7

4 API Reference . 9
4.1 Token Readers . 9

4.1.1 Defining a New Token Reader. 9
4.1.2 Token Reader Calling Convention . 9
4.1.3 Invoking a Reader from a Token Reader 10
4.1.4 Token Reader Library . 11
4.1.5 Limitations . 16

4.1.5.1 Token Delimiters . 16
4.1.5.2 Overlapping Token Readers . 17

4.2 Readers . 18
4.2.1 Defining a New Reader . 18
4.2.2 Reader Library . 19
4.2.3 Compatibility and Confinement . 21

5 Internals . 23

Concept Index . 25

Function Index . 27

ii A Reader Framework for Guile

1

A Reader Framework for Guile

This document describes Guile-Reader version 0.6.2, for GNU Guile’s 2.0 stable series, as
well as the forthcoming 2.2 series and the legacy 1.8 series. It was last updated in March
2017.

This documentation should be mostly complete. Details about the C API are omitted
from this manual. They can be found in the public header files.

2 A Reader Framework for Guile

Chapter 1: Introduction 3

1 Introduction

Guile currently provides limited extensibility of its reader, by means of read-hash-extend
(see section “Reader Extensions” in Guile Reference Manual), for instance, or read-enable
(see section “Scheme Read” in Guile Reference Manual). SRFI-10 tries to propose a generic,
portable, extension mechanism similar to read-hash-extend but limited to #, sequences.
Moreover, while this may not always be desirable, all these extension facilities have a global
effect, changing the behavior of the sole reader implementation available at run-time. This
makes it impossible to have, for instance, one module consider names starting with : as
symbols, while another considers them as keywords.

Extensions such as the read syntax for SRFI-4 numeric vectors (see section “Uniform
Numeric Vectors” in Guile Reference Manual) had to be added to Guile’s built-in C reader.
Syntactic extensions that did not appeal the majority of users, like Emacs-Lisp vectors,
are #ifdef’d within the reader code and are not available by default. Moreover, some
extensions are incompatible with each other, such as the DSSSL keyword syntax and SCSH
block comments (see section “Block Comments” in Guile Reference Manual). In short the
current reader syntax is hardly extensible.

The idea of Guile-Reader is to provide a framework allowing users to quickly define
readers for whatever syntax (or rather: variant of the Scheme syntax) they like. Programs
can then provide their own readers and, thanks to Guile’s current-reader mechanism,
have their code read with this reader. When using Guile 2.0, readers produced by Guile-
Reader are Unicode-capable; they can read from any ASCII-compatible encoding, such as
UTF-8 or ISO-8859-1.

While it is much simpler than a full-blown lexer generator such as Flex, Danny Dubé’s
SILex and Bigloo’s RGC, its simple programming interface should make it very straightfor-
ward to implement readers, especially for Scheme-like syntaxes. Best of all, Guile Reader
comes with a library of components that can typically be used to construct a reader for
the Scheme syntax. And each one of this components may be reused at will when creating
other readers. On the other hand, one should be aware that this simpler API comes at the
cost of a lack of consistency in some cases, as outlined later in this manual (see Section 4.1.5
[Limitations], page 16).

Common Lisp has a similar mechanism to extend its reader which is called the read table.
Gambit Scheme, for instance, also provides an implementation of read tables. However, it
appears to have limitations similar to Guile’s read-enable and read-hash-extend in terms
of possibilities for syntax extension. On the other hand, it allows the reader and writer to
be kept consistent, which Guile-Reader does not address.

http://srfi.schemers.org/srfi-10/srfi-10.html
http://www.gnu.org/software/flex/
http://www.iro.umontreal.ca/~dube/
http://www.iro.umontreal.ca/~dube/
http://www.inria.fr/mimosa/fp/Bigloo
http://www.iro.umontreal.ca/~gambit/

4 A Reader Framework for Guile

Chapter 2: Overview 5

2 Overview

Guile-Reader allows for the construction of readers capable of understanding various syn-
tactic variants. The simplest way to use it is through its reader library that allows one
to pick and choose various commonly used syntactic extensions to the standard Scheme
syntax (see Section 4.2.2 [Reader Library], page 19). However, Guile-Reader also provides
a finer-grain programming interface allowing the construction of virtually any reader, with
its own syntactic specificities. The following sections focus primarily on this capability.

Before going into the details of the reader framework API, let us have a quick overview
of what this is. Basically, Guile-Reader introduces two objects: readers and token readers.
Readers can be thought of, simply, as procedures like Scheme’s read (see section “Input”
in Revised^5 Report on the Algorithmic Language Scheme), i.e., procedures that take one
(optional) argument, namely the port to read from. We will see later that readers as defined
by Guile-Reader can actually receive two more arguments (see Section 4.2.1 [Defining a
New Reader], page 18). A reader, like read, reads a sequence of characters (the external
representation of some object) and returns a Scheme object.

Token readers (TRs, for short) are the building block of a reader. A token reader is
basically an association between a character or set of characters and a procedure to read
and interpret a sequence of characters starting with one of the former. For instance, in a
standard Scheme reader, the character (may be associated to a procedure that reads an
S-expression. Likewise, lower-case and upper-case letters associated with the appropriate
procedure form a token reader for symbols.

In Guile-Reader, TRs may be written either in Scheme or in C, and they can even be a
reader produced by Guile-Reader itself. Unless it is a reader, the procedure (or C function)
used to create a TR will receive four arguments:

• the character that was read and which triggered its call; in the S-exp example, this
would be (;

• the port to read from;

• the reader which performed this invocation;

• the top-level reader which yielded this invocation.

The next section shows how to get started with Guile-Reader, using a high-level API.
Details about of the programming interface are given in the API reference (see Chapter 4
[API Reference], page 9).

6 A Reader Framework for Guile

Chapter 3: Quick Start 7

3 Quick Start

The simplest way to get started and to produce customized readers is through the high-level
API provided by the (system reader library) module. As the name suggests, this module
provides a library of readily usable readers. The make-alternate-guile-reader procedure
gives access to these readers. It can be passed a list of symbols describing reader options,
such as whether you want support for DSSSL keywords, SRFI-62 comments, SRFI-30 block
comments, etc.

The following example binds to my-reader a Scheme reader that supports DSSSL-style
keywords and SRFI-62 comments, and that is case insensitive:

(use-modules (system reader library))

(define my-reader

(make-alternate-guile-reader ’(dsssl-keywords

srfi62-sexp-comments

case-insensitive)))

This reader can then be used like the regular read procedure:

(procedure? my-reader)

=> #t

(with-input-from-string "some-symbol" my-reader)

=> some-symbol

(my-reader (open-input-string "MiXeD-CaSe"))

=> mixed-case

(my-reader (open-input-string "(an sexp with a #;srfi-62 comment)"))

=> (an sexp with a comment)

(my-reader (open-input-string "#!some-DSSSL-keyword"))

=> #:some-dsssl-keyword

Most of the time, you will want to use it as the current reader, at least in the module
where you created it. Fortunately, Guile provides a mechanism for this, the current-

reader fluid (see section “Loading” in Guile Reference Manual). Changing the value of
this fluid from a file that is being loaded will affect the reader use to load it. In general,
you will want to modify current-reader not only at run time, but also at compile time
and when the code is evaluated, which can be achieved using eval-when (see section “Eval
When” in GNU Guile Reference Manual). For instance:

;;; This is the beginning of my Scheme file. At this point, Guile’s

;;; default reader is used (or, alternatively, the one that was

;;; passed as a second parameter to ‘load’). So, for instance, DSSSL

;;; keywords are _not_ recognized.

;; Let’s create our own customized reader...

(use-modules (system reader library))

http://srfi.schemers.org/srfi-62/srfi-62.html
http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-30/srfi-30.html

8 A Reader Framework for Guile

;; ’eval-when’ here is needed to make ’my-reader’ accessible at

;; compile time, and to have the ’current-reader’ change take

;; effect at compile time.

(eval-when (compile load eval)

(define my-reader

(make-alternate-guile-reader ’(dsssl-keywords

srfi62-sexp-comments

case-insensitive)))

;; Let’s make it the current reader.

(fluid-set! current-reader my-reader))

;; From now on, MY-READER is used to read the rest of this file. Thus

;; we can happily use the syntactic extensions it implements: DSSSL

;; keywords, SRFI-62 comments and case-insensitivity.

(if (not (keyword? #!dsssl-keyword))

(error "Something went wrong, this should not happen!"))

The nice thing is that current-reader is reset to its initial value when the dynamic
extent of load is left. In other words, the loader of the file above is not affected by the
fluid-set! statement. Reader changes are hygienic and modules can use their own without
risking to harm each other.

The full list of options supported by make-alternate-guile-reader is shown in Sec-
tion 4.2.2 [Reader Library], page 19. However, this option set is quite limited and you may
find yourself wanting a syntactic extension not available here. In that case, you will want
to build a new reader, possibly reusing existing reader components known as token readers,
as described in Section 4.2.1 [Defining a New Reader], page 18.

Chapter 4: API Reference 9

4 API Reference

All the Scheme procedures described below are exported by the (system reader) module.
In order to be able to use them, you will need to import this module first:

(use-modules (system reader))

A C variant is also available for most of them by including the declarations available in
the <guile-reader/reader.h> header file.

4.1 Token Readers

Basically, token readers are the association of a character or set of characters and a function
that is able to interpret character sequences that start by one of these characters. We will
see below how to define new token readers first, and then how to re-use existing ones.

4.1.1 Defining a New Token Reader

A new token reader object can be created by calling the make-token-reader procedure
with a character specification and a procedure. A character specification defines the set of
characters which should trigger an invocation of the corresponding procedure. The character
specification may be either:

• a single character;

• a pair of characters, which is interpreted as a character range;

• a list of characters, which is interpreted as a set of characters.

The procedure passed to make-token-reader may actually be either a C function or
Scheme procedure that takes four arguments (see Section 4.1.2 [TR Calling Convention],
page 9), any “object” returned by token-reader-procedure, or a reader. This last option
turns out to be quite helpful. For example, this is very convenient when implementing the
various Scheme read syntaxes prefixed by the # character: one can create a reader for #,
and then turn it into a token reader that is part of the top-level reader.

The reference for make-token-reader is given below:

[Scheme Procedure]make-token-reader spec proc [escape?]
[C Function]scm_make_token_reader (SCM spec, SCM proc, SCM escape p)

Use procedure (or reader) proc as a token reader for the characters defined by spec.
If escape p is true, then the reader this token reader belongs to should return even if
its result is undefined.

The next section explains the token reader calling convention, i.e., how the proc argument
to make-token-reader is invoked.

4.1.2 Token Reader Calling Convention

A token reader’s procedure is passed four arguments:

• the character that was read and which triggered its call; in the S-exp example, this
would be (;

• the port to read from;

10 A Reader Framework for Guile

• the reader which performed this invocation, i.e., either an scm_reader_t object (if the
token reader is written in C) or a four-argument Scheme procedure (if the token reader
is written in Scheme);

• the top-level reader which yielded this invocation and which may be different from the
previous argument in the case a token reader was made from a reader; the use of these
two arguments will be detailed in the next section, Section 4.1.3 [Invoking a Reader
from a TR], page 10.

It must return a Scheme object resulting from the interpretation of the characters read.
It may as well raise an error if the input sequence is corrupt. Finally, it may return
unspecified, in which case the calling reader will not return and instead continue read-
ing. This is particularly useful to define comment token readers: a TR that has just read
a comment will obviously not have any sensible Scheme object to return, and a reader is
not expected to return anything but a “real” Scheme object. A token reader for Scheme’s
; line comments may be defined as follows:

(make-token-reader #\; read-a-line-and-return-unspecified)

This behavior may, however, be overridden by passing make-token-reader a third ar-
gument (called escape?):

(make-token-reader #\; read-a-line-and-return-unspecified #t)

A reader that includes this TR will return *unspecified* once a line comment has
been read. This is particularly useful, for instance, when implementing #! block comments
(see section “Block Comments” in Guile Reference Manual, for more information) as a TR
attached to #\! within the #\# sub-reader (see Section 4.1.1 [Defining a New Token Reader],
page 9).

Finally, the procedure passed to make-token-reader may be #f, in which case the
resulting TR will just have the effect of ignoring the characters it is associated to. For
instance, handling white spaces may be done by defining a TR like this:

(make-token-reader ’(#\space #\newline #\tab) #f)

4.1.3 Invoking a Reader from a Token Reader

As seen in section See Section 4.1.1 [Defining a New Token Reader], page 9, token readers
are systematically passed to readers when invoked. The reason why this may be useful may
not be obvious at first sight.

Consider an S-exp token reader. The TR itself doesn’t have sufficient knowledge to read
the objects that comprise an S-exp. So it needs to be able to call the reader that is being
used to actually read those objects.

The need for the top-level-reader argument passed to token readers may be illustrated
looking at the implementation of the vector read syntax (see section “Vector Syntax” in
Guile Reference Manual). One may implement the vector reader as a token reader of the
sub-reader (see Section 4.1.1 [Defining a New Token Reader], page 9). The vector token
reader may be implemented like this:

(lambda (chr port reader top-level-reader)

;; At this point, ‘#’ as already been read and CHR is ‘(’,

;; so we can directly call the regular S-expression reader

;; and convert its result into a vector.

(let ((sexp-read (token-reader-procedure

Chapter 4: API Reference 11

(standard-token-reader ’sexp))))

(apply vector

(sexp-read chr port reader))))

When this procedure is invoked, reader points to the # sub-reader.

4.1.4 Token Reader Library

Guile-Reader comes with a number of re-usable token readers. Together, they might be
assembled to form a complete Scheme reader equivalent to that of Guile (see Section 4.2.2
[Reader Library], page 19). Or they can be used individually in any reader.

The standard-token-reader procedure takes a symbol that names a standard TR from
the library and returns it (or #f if not found). Currently, the available TRs are:

Token Reader Character Spec. Description

boolean 4 characters, #\f...
#\F

This is a sharp token reader, i.e. it reads
an R5RS boolean (#f or #F, #t or #T) once
a # character has been read.

boolean-srfi-4 3 characters, #\t...
#\F

This is a sharp token reader, i.e. it reads
an R5RS boolean (#t, #T, #F, but not #f)
once a # character has been read. Com-
pared to the boolean token reader, this one
is useful when SRFI-4 floating-point homo-
geneous vectors are to be used at the same
time: the SRFI-4 TR will handle #f on its
own (see Section 4.1.5.2 [Overlapping To-
ken Readers], page 17).

brace-free-number 13 characters, #\-...
#\9

Return a number or a symbol, considering
curly braces as delimiters.

brace-free-symbol-

lower-case

from #\a to #\z Read a symbol that starts with a lower-
case letter and return a symbol. This to-
ken reader recognizes braces as delimiters,
unlike R5RS/R6RS.

brace-free-symbol-

misc-chars

17 characters, #\[...
#\$

Read a symbol that starts with a non-
alphanumeric character and return a sym-
bol. This token reader recognizes braces as
delimiters, unlike R5RS/R6RS.

brace-free-symbol-

upper-case

from #\A to #\Z Read a symbol that starts with an upper-
case letter and return a symbol. This token
reader recognizes braces as delimiters, un-
like R5RS/R6RS.

12 A Reader Framework for Guile

character #\\ This is a sharp token reader, i.e. it reads
an R5RS character once a # character has
been read.

curly-brace-sexp #\{ Read an S-expression enclosed in square
brackets. This is already permitted by
a number of Scheme implementations and
will soon be made compulsory by R6RS.

guile-bit-vector #* This is a sharp token reader, i.e. it reads a
bit vector following Guile’s read syntax for
bit vectors. See See Info file ‘guile’, node
‘Bit Vectors’, for details.

guile-extended-

symbol

#\{ This is a sharp token reader, i.e. it reads a
symbol using Guile’s extended symbol syn-
tax assuming a # character was read. See
See Info file ‘guile’, node ‘Symbol Read

Syntax’, for details.

guile-number 13 characters, #\-...
#\9

Read a number following Guile’s fashion,
that is, as in R5RS (See Info file ‘r5rs’,
node ‘Lexical structure’, for syntactic
details). Because the syntaxes for numbers
and symbols are closely tight in R5RS and
Guile, this token reader may return either
a number or a symbol. For instance, it
will be invoked if the string 123.123.123

is passed to the reader but this will actu-
ally yield a symbol instead of a number (see
Section 4.1.5.2 [Overlapping Token Read-
ers], page 17).

guile-symbol-

lower-case

from #\a to #\z Read a symbol that starts with a lower-case
letter in a case-sensitive fashion.

guile-symbol-misc-

chars

19 characters, #\[...
#\$

Read a symbol that starts with a non-
alphanumeric character in a case-sensitive
fashion. Note that this token reader does
not consider square brackets as delimiters,
as was the case with Guile 1.8 and earlier.

guile-symbol-

upper-case

from #\A to #\Z Read a symbol that starts with an upper-
case letter in a case-sensitive fashion.

Chapter 4: API Reference 13

keyword #\: This token reader returns a keyword as
found in Guile. It may be used either after
a # character (to implement Guile’s default
keyword syntax, #:kw) or within the top-
level reader (to implement :kw-style key-
words).
It is worth noting that this token reader

invokes its top-level in order to read the
symbol subsequent to the : character.
Therefore, it will adapt to the symbol de-
limiters currently in use (see Section 4.1.5.1
[Token Delimiters], page 16).

number+radix 12 characters, #\b...
#\E

This is a sharp token reader, i.e. it reads a
number using the radix notation, like #b01

for the binary notation, #x1d for the hex-
adecimal notation, etc., see See Info file
‘guile’, node ‘Number Syntax’, for details.

quote-quasiquote-

unquote

3 characters, #\’...
#\,

Read a quote, quasiquote, or unquote S-
expression.

r5rs-lower-case-

number

13 characters, #\-...
#\9

Return a number or a lower-case symbol.

r5rs-lower-case-

symbol-lower-case

from #\a to #\z Read a symbol that starts with a lower-case
letter and return a lower-case symbol, re-
gardless of the case of the input.

r5rs-lower-case-

symbol-misc-chars

19 characters, #\[...
#\$

Read a symbol that starts with a non-
alphanumeric character and return a lower-
case symbol, regardless of the case of the
input.

r5rs-lower-case-

symbol-upper-case

from #\A to #\Z Read a symbol that starts with an upper-
case letter and return a lower-case symbol,
regardless of the case of the input.

r5rs-upper-case-

number

13 characters, #\-...
#\9

Return a number or an upper-case symbol.

r6rs-number 13 characters, #\-...
#\9

Return a number or a symbol. This token
reader conforms to R6RS, i.e. it considers
square brackets as delimiters.

14 A Reader Framework for Guile

r6rs-symbol-lower-

case

from #\a to #\z Read a symbol that starts with a lower-
case letter and return a symbol. This to-
ken reader conforms with R6RS in that it is
case-sensitive and recognizes square brack-
ets as delimiters (see Section 4.1.5.1 [Token
Delimiters], page 16).

r6rs-symbol-misc-

chars

17 characters, #\{...
#\$

Read a symbol that starts with a non-
alphanumeric character and return a sym-
bol. This token reader conforms with
R6RS in that it is case-sensitive and recog-
nizes square brackets as delimiters (see Sec-
tion 4.1.5.1 [Token Delimiters], page 16).

r6rs-symbol-upper-

case

from #\A to #\Z Read a symbol that starts with an upper-
case letter and return a symbol. This to-
ken reader conforms with R6RS in that it is
case-sensitive and recognizes square brack-
ets as delimiters (see Section 4.1.5.1 [Token
Delimiters], page 16).

r6rs-syntax-quote-

quasiquote-unquote

3 characters, #\’...
#\,

Read an R6RS-style syntax, quasisyntax,
or unsyntax S-expression.

scsh-block-comment #\! This is a sharp token reader, i.e. it
reads a SCSH-style block comment (like
#! multi-line comment !#) and returns
unspecified, assuming a # character
was read before. This token reader has its
“escape” bit set, meaning that the reader
that calls it will return *unspecified* to
its parent reader. See also See Info file
‘guile’, node ‘Block Comments’, for details
about SCSH block comments.

semicolon-comment #\; Read an R5RS semicolon line-comment and
return *unspecified*. Consequently, the
calling reader will loop and ignore the com-
ment.

sexp #\(Read a regular S-expression enclosed in
parentheses.

Chapter 4: API Reference 15

skribe-exp #\[Read a Skribe markup expression. Skribe’s
expressions look like this:

[Hello ,(bold [World])!]

=> ("Hello " (bold "World") "!")

See the Skribe web site or the Skribilo web
site for more details.

square-bracket-

sexp

#\[Read an S-expression enclosed in square
brackets. This is already permitted by
a number of Scheme implementations and
will soon be made compulsory by R6RS.

srfi-4 3 characters, #\s...
#\f

This is a sharp token reader, i.e. it reads an
SRFI-4 homogenous numeric vector once
a # character has been read. This token
reader also handles the boolean values #f.

srfi30-block-

comment

#\| This is a sharp token reader, i.e. it
reads an SRFI-30 block comment (like
#| multi-line comment |#) and returns
unspecified, assuming a # character
was read before. This token reader has its
“escape” bit set. For more details about
SRFI-30, see Nested Multi-line Comments.

srfi62-sexp-

comment

#\; This is a sharp token reader, i.e. it
reads an SRFI-62 comment S-expression
(as in (+ 2 #;(comment here) 2)) and re-
turns *unspecified*, assuming a # charac-
ter was read before. This token reader has
its “escape” bit set. For more details about
SRFI-62, please see S-expression comments
specifications.

string #\" Read an R5RS string.

vector #\(This is a sharp token reader, i.e. it reads
an R5RS vector once a # character has been
read.

whitespace from #\soh to
#\space

This is a void token reader that causes its
calling reader to ignore (i.e. treat as white-
space) all ASCII characters ranging from 1
to 32.

http://www.inria.frpenalty z@ /mimosa/fp/Skribe
http://www.nongnu.org/skribilo/
http://www.nongnu.org/skribilo/
http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-62/srfi-62.html
http://srfi.schemers.org/srfi-62/srfi-62.html

16 A Reader Framework for Guile

As can be inferred from the above two lists, reading character sequences starting with
the # characters can easily be done by defining a sub-reader for that character. That reader
can then be passed to make-token-reader as the procedure attached to #:

(define sharp-reader

(make-reader (map standard-token-reader

’(boolean character

number+radix keyword

srfi-4

block-comment))))

(define top-level-reader

(make-reader (list (make-token-reader #\# sharp-reader)

...

)))

The procedures available to manipulate token readers are listed below:

[Scheme Procedure]token-reader-escape? tr
[C Function]scm_token_reader_escape_p (SCM tr)

Return #t if token reader tr requires the readers that use it to return even if its return
value is unspecified.

[Scheme Procedure]token-reader-specification tr
[C Function]scm_token_reader_spec (SCM tr)

Return the specification, of token reader tr.

[Scheme Procedure]token-reader-procedure tr
[C Function]scm_token_reader_proc (SCM tr)

Return the procedure attached to token reader tr. When #f is returned, the tr is a
“fake” reader that does nothing. This is typically useful for whitespaces.

[Scheme Procedure]standard-token-reader name
[C Function]scm_standard_token_reader (SCM name)

Lookup standard token reader named name (a symbol) and return it. If name is does
not name a standard token reader, then an error is raised.

4.1.5 Limitations

This section describes the main limitations and common pitfalls encountered when using
Guile-Reader.

4.1.5.1 Token Delimiters

As can be seen from the previous section, there exist, for instance, an surprisingly high
number of symbol token readers. The reason for this is that different syntax variants define
different token delimiters. Token delimiters are characters that help the reader determine
where tokens that require implicit termination do terminate. Quoting R5RS (see section
“Lexical structure” in Revised^5 Report on the Algorithmic Language Scheme):

Tokens which require implicit termination (identifiers, numbers, characters, and
dot) may be terminated by any <delimiter>, but not necessarily by anything
else.

Chapter 4: API Reference 17

R5RS defines token delimiters as one of the following: a whitespace, a parentheses, a
quotation mark (") or a semi-colon (;) character. On the other hand, R6RS, which is to
support the ability to use square brackets instead of parentheses for S-expressions, also
considers square brackets as token delimiters. Likewise, if we were to support curly braces
to enclose S-expressions, then curly braces would need to be considered as token delimiters
too.

For this reason, the token reader library comes with several symbol token readers: the
guile-symbol- family does not consider square brackets as delimiters while the r6rs-

symbol- family does, the brace-free- TR family considers curly braces as delimiters but
not square brackets, etc. Similarly, several variants of number TRs are available. This is
due to the fact that number TRs may return symbols in corner cases like symbol names
starting with a number.

However, although keywords must also comply with the token delimiters rules, there is
only one keyword TR (called keyword). The reason for this is that this TR relies on the
top-level reader’s symbol reader to read the symbol that makes up the keyword being read.

In the current design of Guile-Reader, this token delimiter issue creates a number of
pitfalls when one is willing to change the current delimiters. In particular, one has to be
very careful about using TRs that consistently assume the same token delimiters.

A “real” lexer generator such as Danny Dubé’s SILex avoids such issues because it allows
the definition of tokens using regular expressions. However, its usage may be less trivial
than that of Guile-Reader.

4.1.5.2 Overlapping Token Readers

As can be seen from the descriptions of the standard token readers (see Section 4.1.4 [Token
Reader Library], page 11), token readers sometimes “overlap”, i.e., the set of input strings
they match overlap. For instance, the boolean token reader should match #t, #T, #f or #F.
However, the srfi-4 token reader also needs to match floating-point numeric vectors such
as #f32(1.0 2.0 3.0). Similarly, strings like 1 are, logically, handled by the guile-number
(or similar) token reader; however, since a string like 1+ should be recognized as a symbol,
rather than a number, it must then be passed to one of the symbol token readers.

In those two cases, the input sets of those two token readers overlap. In order for the
resulting reader to work as expected, the two overlapping token readers need to somehow
cooperate. In the first example, this is achieved by having the srfi-4 TR read in strings
starting with #f or #F and passing them to the boolean-srfi-4 TR if need be. In the second
case, this is done by having number TRs (e.g., guile-number) explicitly check for non-digit
characters and return a symbol instead of a number when a non-digit is encountered.

It should be obvious from these two examples that this limitation impedes full separation
of the various TRs. Fortunately, there are not so many cases where such overlapping
occurs when implementing readers for R5RS-like syntaxes. The implementation of make-
alternate-guile-reader (see Section 4.2.2 [Reader Library], page 19) shows how such
problems have been worked around.

Lexer generators such as Flex, SILex and Bigloo’s RGC (see section “Regular Parsing” in
Bigloo, A “Practical Scheme Compiler”—User Manual) obviously do not have this problem:
all possible “token” types are defined using regular expressions and the string-handling code

http://www.gnu.org/software/flex/
http://www.iro.umontreal.ca/~dube/

18 A Reader Framework for Guile

(e.g., code that converts a string into a Scheme number) is only invoked once a full matching
string has been found.

4.2 Readers

Guile-Reader is about defining readers. Continuing to read this manual was definitely a
good idea since we have finally reached the point where we will start talking about how to
define new readers.

4.2.1 Defining a New Reader

Roughly, a reader is no more than a loop which reads characters from a given port, and
dispatches further interpretation to more specific procedures. Written in Scheme, it could
resemble something like:

(define (my-reader port)

(let loop ((result *unspecified*))

(let ((the-char (getc port)))

(case the-char

((#\() (my-sexp-token-reader the-char port my-reader)))

((#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9)

(my-number-token-reader the-char port my-reader))

(else

(error "unexpected character" the-char))))))

Using Guile-Reader, this is done simply by providing a list of token readers to the make-

reader procedure, as in the following example:

(define my-reader

(make-reader (list (make-token-reader #\(my-sexp-token-reader)

(make-token-reader ’(#\0 . #\9)

my-number-token-reader))))

However, the procedure returned by make-reader is different from the hand-written one
above in that in takes two additional optional arguments which makes it look like this:

(define (my-reader port faults-caller-handled? top-level-reader)

(let loop ((the-char (getc port)))

(case the-char

...

(else

(if (not faults-caller-handled?)

(error "unexpected character" the-char)

(ungetc the-char) ;; and return *unspecified*

)))))

Therefore, by default, my-reader will raise an error as soon as it reads a character that
it does not know how to handle. However, if the caller passes #t as its faults-caller-

handled? argument, then my-reader is expected to “unget” the faulty character and return
unspecified, thus allowing the caller to handle the situation.

This is useful, for instance, in the S-exp token reader example: the S-exp token reader
needs to call its calling reader in order to read the components between the opening and

Chapter 4: API Reference 19

closing brackets; however, the calling reader may be unable to handle the #\) character so
the S-exp token reader has to handle it by itself and needs to tell it to the reader.

[Scheme Procedure]%reader-standard-fault-handler chr port reader
[C Function]scm_reader_standard_fault_handler (SCM chr, SCM port, SCM

reader)
Throw a read-error exception indicating that character chr was read from port and
could not be handled by reader.

[Scheme Procedure]make-reader token-readers [fault-handler-proc [flags...]]
[C Function]scm_make_reader (SCM token readers, SCM fault handler proc, SCM

flags)
Create a reader made of the token readers listed in token readers. token readers
should be a list of token readers returned by make-token-reader or standard-

token-reader for instance. The fault handler proc argument is optional and may
be a three-argument procedure to call when an unexpected character is read. When
fault handler proc is invoked, it is passed the faulty character, input port, and reader;
its return value, if any, is then returned by the reader. If fault handler proc is not
specified, then %reader-standard-fault-handler is used. flags is a rest argument
which may contain a list of symbols representing reader compilation flags.

Currently, the flags that may be passed to make-reader are the following:

• reader/record-positions will yield a reader that records the position of the expres-
sion read, which is mostly useful for debugging purposes; this information may then be
accessed via source properties (see section “Procedure Properties” in Guile Reference
Manual).

• reader/lower-case will have the yielded reader convert to lower-case all the letters
that it reads; note that this is not sufficient to implement symbol case-insensitivity
as shown in section “Reader options” in Guile Reference Manual. For this, the token
reader(s) that read symbols must also convert all subsequent characters to lower-case.

• reader/upper-case will have the yielded reader convert to upper-case all the letters
that it reads; again, that is not sufficient to implement case-insensitivity.

• reader/debug causes the generated reader to produce debugging output.

4.2.2 Reader Library

The (system reader) module exports the default-reader procedure which returns a
reader equivalent to Guile’s built-in default reader made of re-usable token readers written
in C (see Section 4.1.4 [Token Reader Library], page 11).

[Scheme Procedure]default-sharp-reader-token-readers
[C Function]scm_default_sharp_reader_token_readers (void)

Return the list of token readers that comprise Guile’s default reader for the # char-
acter.

[Scheme Procedure]default-reader-token-readers
[C Function]scm_default_reader_token_readers (void)

Return the list of token readers that comprise Guile’s default reader.

20 A Reader Framework for Guile

[Scheme Procedure]default-sharp-reader
[C Function]scm_default_sharp_reader (void)

Returns Guile’s default reader for the # character.

Additionally, the (system reader library) module exports a number of procedures
that ease the re-use of readers.

[Scheme Procedure]make-guile-reader [fault-handler [flags...]]
[C Function]scm_make_guile_reader (SCM fault handler, SCM flags)

Make and return a new reader compatible with Guile 2.0’s read, with its default
settings. This function calls make-reader with flags. Note that the sharp reader
used by the returned reader is also instantiated using flags. The value of fault-handler
defaults to %reader-standard-fault-handler.

[Scheme Procedure]make-alternate-guile-reader
Return a newly created Guile reader with options options (a list of symbols, as
for alternate-guile-reader-token-readers), with fault handler fault-handler and
flags flags. The fault-handler and flags arguments are the same as those passed to
make-reader. By default, fault-handler is set to %reader-standard-fault-handler.

[Scheme Procedure]alternate-guile-reader-token-readers
Given options, a list of symbols describing reader options relative to the reader re-
turned by (default-reader), return two lists of token readers: one for use as a sharp
reader and the other for use as a top-level reader. Currently, the options supported
are the following:

no-sharp-keywords

Remove support for #:kw-style keywords.

dsssl-keywords

Add support for DSSSL-style keywords, like #!kw. This option also has
the same effect as no-scsh-block-comments.

colon-keywords

Add support for :kw-style keywords. This is equivalent to (read-set!

keywords ’prefix).

no-scsh-block-comments

Disable SCSH-style block comments (see See Info file ‘guile’, node ‘Block
Comments’, for details).

srfi30-block-comments
Add support for SRFI-30 block comments, like:

(+ 2 #| This is an #| SRFI-30 |# comment |# 2)

srfi62-sexp-comments
Add support for SRFI-62 S-expression comments, like:

(+ 2 #;(a comment) 2)

case-insensitive

Read symbols in a case-insensitive way.

Chapter 4: API Reference 21

square-bracket-sexps

square-brackets

Allow for square brackets around S-expressions.

[Scheme Procedure]read-options->extended-reader-options
Read read-opts, a list representing read options following Guile’s built-in represen-
tation (see See Info file ‘guile’, node ‘Scheme Read’, for details), and return a list
of symbols represented “extended reader options” understood by make-alternate-

guile-reader et al.

4.2.3 Compatibility and Confinement

Guile’s core read subsystem provides an interface to customize its reader, namely via the
read-options (see section “Scheme Read” in Guile Reference Manual) and read-hash-

extend (see section “Reader Extensions” in Guile Reference Manual) procedures.

The main problem with this approach is that changing the reader’s options using these
procedures has a global effect since there is only one instance of read. Changing the behavior
of a single function at the scale of the whole is not very “schemey” and can be quite harmful.
Suppose a module relies on case-insensitivity while another relies on case-sensitivity. If one
tries to use both modules at the same time, chances are that at least one of them will
not work as expected. Risks of conflicts are even higher when read-hash-extend is used:
imagine a module that uses DSSSL-style keywords, while another needs SCSH-style block
comments.

In (system reader confinement), guile-reader offers an implementation of
read-option-interface and read-hash-extend that allows to confine such settings on a
per-module basis. In order to enable reader confinement, one just has to do this:

(use-modules (system reader confinement))

Note that this must be done before the suspicious modules are loaded, that is, typically
when your program starts. This will redefine read-options-interface and read-hash-

extend so that any future modification performed via Guile’s built-in reader option interface
will be confined to the calling module.

Starting from Guile 1.8.0, current-reader is a core binding bound to a fluid whose
value should be either #f or a reader (i.e., a read-like procedure). The value of this fluid
dictates the reader that is to be used by primitive-load and its value can be changed
dynamically (see section “Loading” in Guile Reference Manual).

The confined variants of read-options-interface and read-hash-extend rely on this
feature to make reader customizations local to the file being loaded. This way, invocations of
these functions from within a file being loaded by primitive-load take effect immediately.

22 A Reader Framework for Guile

Chapter 5: Internals 23

5 Internals

In order to not have to trade too much performance for flexibility, Guile-Reader dynam-
ically compiles code for the readers defined using GNU lightning (see section “Overview”
in Using and Porting GNU lightning). As of version 1.2c, GNU lightning can generate
code for the PowerPC, SPARC, and IA32 architectures. For other platforms, Guile-Reader
provides an alternative (slower) C implementation that does not depend on it. Using the
lightning-generated readers typically provides a 5% performance improvement over the static
C implementation. However, note that lightning 2.x is not supported yet.

Re-using token readers written in C, as explained in See Section 4.1.4 [Token Reader
Library], page 11, does not imply any additional cost: the underlying C function will be
called directly by the reader, without having to go through any marshalling/unmarshalling
stage.

Additionally, on the C side, token readers may be initialized statically (except, obviously,
token readers made out of a dynamically-compiled reader). Making good use of it can
improve the startup time of a program. For example, make-guile-reader (see Section 4.2.2
[Reader Library], page 19) is implemented in C and it uses statically initialized arrays of
token readers. It still needs to invoke scm_c_make_reader (), but at least, token readers
themselves are “ready to use”.

Scanners as generated by Flex or similar tools should theoretically be able to provide
better performance because the input reading and pattern matching loop is self-contained,
may fit in cache, and only has to perform function calls once a pattern has been fully
recognized.

24 A Reader Framework for Guile

Chapter 5: Concept Index 25

Concept Index

C
calling convention . 9
character specification . 9
confinement . 21

L
lexer . 3, 17

P
pitfall . 17

R
R5RS . 16
R6RS . 16

read table . 3
reader . 5, 18
reader confinement . 21
reader library . 5, 19

S
SCSH block comments . 10
SILex . 3
SRFI-30 . 15
SRFI-62 . 15

T
token delimiters . 16
token reader . 5, 9
token reader library . 11
top-level reader . 10

26 A Reader Framework for Guile

Chapter 5: Function Index 27

Function Index

%
%reader-standard-fault-handler 19

A
alternate-guile-reader-token-readers 20

C
current-reader . 21

D
default-reader-token-readers 19
default-sharp-reader . 20
default-sharp-reader-token-readers 19

M
make-alternate-guile-reader 7, 20
make-guile-reader . 20, 23
make-reader . 18, 19
make-token-reader . 9

R
read-disable . 21

read-enable . 21
read-hash-extend . 21
read-options . 21
read-options->extended-reader-options 21
read-options-interface . 21
read-set! . 21

S
scm_default_reader_token_readers 19
scm_default_sharp_reader 20
scm_default_sharp_reader_token_readers . . . 19
scm_make_guile_reader . 20
scm_make_reader . 19
scm_make_token_reader . 9
scm_reader_standard_fault_handler 19
scm_standard_token_reader 16
scm_token_reader_escape_p 16
scm_token_reader_proc . 16
scm_token_reader_spec . 16
standard-token-reader . 16

T
token-reader-escape? . 16
token-reader-procedure . 16
token-reader-specification 16

28 A Reader Framework for Guile

	A Reader Framework for Guile
	Introduction
	Overview
	Quick Start
	API Reference
	Token Readers
	Defining a New Token Reader
	Token Reader Calling Convention
	Invoking a Reader from a Token Reader
	Token Reader Library
	Limitations
	Token Delimiters
	Overlapping Token Readers

	Readers
	Defining a New Reader
	Reader Library
	Compatibility and Confinement

	Internals
	Concept Index
	Function Index

